
Copyright © 1999-2011 Parallels Holdings, Ltd. and its affiliates. All rights reserved.

Parallels Virtual Automation
4.6.4 Agent
Programmer's Guide

ISBN: N/A
Parallels Holdings, Ltd.
c/o Parallels International GMbH.
Parallels International GmbH
Vordergasse 49
CH8200 Schaffhausen
Switzerland
Tel: + 49 (6151) 42996 - 0
Fax: + 49 (6151) 42996 - 255

Copyright © 1999-2011 Parallels Holdings, Ltd. and its affiliates. All rights reserved.

Parallels, Coherence, Parallels Transporter, Parallels Compressor, Parallels Desktop, and Parallels Explorer are registered
trademarks of Parallels Software International, Inc. Virtuozzo, Plesk, HSPcomplete, and corresponding logos are
trademarks of Parallels Holdings, Ltd. The Parallels logo is a trademark of Parallels Holdings, Ltd.
This product is based on a technology that is the subject matter of a number of patent pending applications.
Virtuozzo is a patented virtualization technology protected by U.S. patents 7,099,948; 7,076,633; 6,961,868 and having
patents pending in the U.S.
Plesk and HSPcomplete are patented hosting technologies protected by U.S. patents 7,099,948; 7,076,633 and having
patents pending in the U.S.

Distribution of this work or derivative of this work in any form is prohibited unless prior written permission is obtained from
the copyright holder.

Apple, Bonjour, Finder, Mac, Macintosh, and Mac OS are trademarks of Apple Inc.
Microsoft, Windows, Microsoft Windows, MS-DOS, Windows NT, Windows 95, Windows 98, Windows 2000, Windows
XP, Windows 2003 Server, Windows Vista, Windows 2008, Microsoft SQL Server, Microsoft Desktop Engine (MSDE),
and Microsoft Management Console are trademarks or registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds.
Red Hat is a registered trademark of Red Hat Software, Inc.
SUSE is a registered trademark of Novell, Inc.
Solaris is a registered trademark of Sun Microsystems, Inc.
X Window System is a registered trademark of X Consortium, Inc.
UNIX is a registered trademark of The Open Group.
IBM DB2 is a registered trademark of International Business Machines Corp.
SSH and Secure Shell are trademarks of SSH Communications Security, Inc.
MegaRAID is a registered trademark of American Megatrends, Inc.
PowerEdge is a trademark of Dell Computer Corporation.
eComStation is a trademark of Serenity Systems International.
FreeBSD is a registered trademark of the FreeBSD Foundation.
Intel, Pentium, Celeron, and Intel Core are trademarks or registered trademarks of Intel Corporation.
OS/2 Warp is a registered trademark of International Business Machines Corporation.
VMware is a registered trademark of VMware, Inc.
All other marks and names mentioned herein may be trademarks of their respective owners.

Contents

Preface...7
About This Guide .. 7
Feedback.. 7

Getting Started ..8
PVA Agent Overview ... 9
PVA Agent API .. 10
Supported Products and Installation ... 11
Starting, Stopping, Restarting ... 12
Location of XSD and WSDL .. 13
Agent Architecture .. 14
Connectivity .. 16
Authentication Concepts ... 17

Realms .. 18
Authorization ... 18

Terminology .. 19

Using XML API...20
XML API Basics .. 20

XML Schema... 21
Agent Messages.. 22
Error Handling ... 34

Creating a Simple Client Application.. 35
Connecting to Agent ... 36
Logging In ... 38
Retrieving Virtual Environment List... 41
Restarting a Virtual Environment.. 42
Summary... 43
The Complete Program Code.. 44

Login and Session Management ... 46
Retrieving Realm Information ... 47
Logging In ... 50

4

Contents

Sessions.. 51
Logging In To PVA or PPP .. 52

Container and Virtual Machine Templates.. 55
Getting Sample Configuration List ... 56
Getting Virtual Machine Template List.. 58
Getting Resource Library Template List ... 61

Creating and Configuring Virtuozzo Containers ... 63
Getting a List of OS Templates.. 64
Populating Container Configuration Structure.. 66
Creating a Virtuozzo Container .. 68
Retrieving Container Configuration .. 70
Configuring a Virtuozzo Container ... 71
Destroying a Virtuozzo Container... 74

Creating and Managing Parallels Virtual Machines... 74
Creating a Virtual Machine... 75
Retrieving Virtual Machine Information ... 77
Destroying Virtual Machine .. 77

Performance Monitor .. 78
Classes, Instances, Counters .. 78
Getting a Performance Report... 79
Receiving Periodic Reports.. 81
Monitoring Multiple Environments.. 83

Events and Alerts .. 84
Request Routing ... 87

Using SOAP API ..90
Introduction... 90

Overview ... 90
Key Features ... 91
Limitations... 91
Generating Client Code from WSDL .. 91

Creating a Simple Client Application.. 91
Step 1: Choosing a Development Project .. 92
Step 2: Generating Proxy Classes From WSDL... 92
Step 3: Fixing Get/Set Method Name Conflict ... 93

5

Contents

Step 4: Main Program File ... 95
Step 5: Running the Sample.. 103
Complete Program Code .. 104

Developing Agent SOAP Clients.. 110
SOAP API Reference... 110
Optional Elements ... 111
Elements with no Content ... 112
Base64-encoded Values ... 113
Timeouts ... 113

Managing Containers .. 113
Creating a Container ... 114
Starting, Stopping, Restarting a Container... 117
Destroying a Container .. 118
Suspending and Resuming a Container... 119
Getting Container Configuration Information .. 120
Configuring a Container... 121
Cloning a Virtuozzo Container ... 127
Migrating a Container to a Different Host... 129
Backup Operations.. 132
Performance Monitor... 146
Monitoring Alerts ... 149

Other SOAP Clients and Their Known Issues .. 152
Visual Basic .NET .. 152
Visual J# .NET ... 152
Apache Axis 1.2 for Java... 153

Troubleshoting .. 154

Advanced Topics...156
Agent Configuration .. 156
Internal Request Scheduler ... 156

Message Classification and Priorities ... 157
Pool and Single Operators... 158
Dynamic Limits .. 159
Queue ... 159
Timeouts ... 160

6

Contents

Appendix A: Performance Counters ...161

Index ..169

Preface

In This Chapter

About This Guide ..7
Feedback..7

About This Guide
This guide describes how to develop client applications using PVA Agent API. The primary
audience for this guide is anyone developing PVA Agent client applications. To use this book,
you should have UNIX or Windows system administration experience and a good knowledge
of Parallels Server Bare Metal, Parallels Virtuozzo Containers, or Parallels Server for Mac
software. Some programming skills are required, including a good knowledge of XML and
XML Schema language (also referred to as XML Schema Definition or XSD), and optionally a
knowledge of SOAP and one of the languages supporting it.

Feedback
If you spot a typo in this guide, or if you have thought of a way to make this guide better, we
would love to hear from you!

The ideal place for your comments and suggestions is the Parallels documentation feedback
page (http://www.parallels.com/en/support/usersdoc/).

C H A P T E R 1

Preface

Getting Started

In This Chapter

PVA Agent Overview ...9
PVA Agent API ..10
Supported Products and Installation..11
Starting, Stopping, Restarting ...12
Location of XSD and WSDL ..13
Agent Architecture ..14
Connectivity ..16
Authentication Concepts ...17
Terminology ..19

C H A P T E R 2

Getting Started

9

Getting Started

PVA Agent Overview
PVA Agent is a server-side software that enables the development of client applications for
remote management an monitoring of virtual environments based on Parallels server
virtualization technologies. Using PVA Agent APIs you can programmatically integrate
management of virtual environments with external software products or to build your own
management and monitoring tools.

The following list describes the most common operations that can be performed through PVA
Agent:

• Create and destroy a virtual environment.

• Start, stop, restart a virtual environment.

• Migrate, clone, and move a virtual environment to a different location.

• Create virtual environment backups.

• Get virtual environment status and configuration information.

• Modify virtual environment configuration parameters.

• Obtain current statistical data and resource usage information.

• Monitor system performance.

• Receive notifications about critical system events, directly or via e-mail.

• Set up Virtual Networks.

• Manage PVA Infrastructure.

• Install, update, and remove Virtuozzo Container templates.

• Manage operating system services.

• Manage devices.

• Manage files and directories.

• Manage users and groups.

10

Getting Started

PVA Agent API
PVA Agent provides the following APIs that you can use to create client applications.

XML API

The XML API is a set of rules by which clients can exchange information with and request
actions from Agent. The XML API protocol is based on XML messages. A message is an XML
document composed of XML elements that specify the request or response parameters.
Each message is defined using the XML Schema 1.0 standard.

With XML API, you compose an XML request in accordance with the schema and send it to
Agent using SSL or other supported protocol. Agent processes the request, takes the
appropriate action, and sends back an XML response containing the data that resulted from
the request. Your application then parses the received XML to extract the data.

The XML API is described in detail in the Using XML API chapter (p. 20).

SOAP API

The PVA Agent SOAP API is a Web service based on the SOAP 1.1 and WSDL 1.1
standards. With SOAP API, you build your client applications using one of the SOAP clients
that can access a Web service and generate proxy classes from WSDL documents.

An API call is made by invoking a proxy class method in a language native format.
Transparently to the programmer, the SOAP client transforms the method invocation into a
SOAP message and sends it to Agent over HTTP or HTTPS protocols. Agent processes the
message, takes the appropriate action, and sends a response (also a SOAP message)
containing the data back to the SOAP client. The client creates an appropriate object and
populates it with the data from the received SOAP message. You then extract the data from
the object as you usually do in the programming language that you are using.

The SOAP API is described in detail in the Using SOAP API chapter (p. 90).

Both the SOAP API and the XML API share the same Schema, so they essentially provide the
same functionality. The basic format of the input and output data is also the same in both
APIs. The difference is as follows:

• The XML API provides a complete set of interfaces to perform the full range of virtual
machines management and monitoring tasks.

• The SOAP API provides a similar set of functions, with some limitations. Specifically,
SOAP clients cannot invoke PVA Agent services that require the asynchronous request
processing capability. This includes the services that provide performance reports on a
periodic basis, progress reports, and event notifications. You can still obtain some of that
data using the on-demand functionality. For example, you can obtain the most recent
performance report, or retrieve performance data from a history database.

11

Getting Started

The XML Schema on which both APIs are based is described in detail in the Parallels Agent
XML API Reference guide, which is a companion to this book. You can use it as a reference
when programming with either API.

Supported Products and Installation
Server side

PVA Agent 4.6.4 is compatible with the following server side products:

• Parallels Server Bare Metal 5.0

• Parallels Virtuozzo Containers for Linux 4.7

PVA Agent 4.6.4 supports the following host operating systems with Parallels Virtuozzo
Containers for Linux 4.7:

• CentOS 5.x

• CentOS 6.x

• RHEL 5.x

• RHEL 6.x

PVA Agent can be installed from the installation package of Parallels Server Bare Metal 5.0
and Parallels Virtuozzo Containers for Linux 4.7. For the installation instructions, refer to the
installation guide of the respective server side product.

To connect to PVA Agent from your client program for the first time, you will need to know
the system administrator password. System administrator is by default granted all access
rights to PVA Agent functions, including the rights to execute any of the PVA Agent API calls
and access any of the virtual environments. You can add more users with specific access
rights later using the PVA Agent API.

Client side

The only software that you'll need on your client machine is the development environment of
your choice. No additional client software is needed. To run the code samples provides in this
guide you'll need the following installed on your development machine:

• Perl, to run XML API samples.

• Microsoft Visual Studio .NET and Microsoft .NET Framework, to run SOAP API samples.

For more information and additional system requirements, please also see the Using XML
API (p. 20) and Using SOAP API (p. 90) chapters respectively.

12

Getting Started

Starting, Stopping, Restarting
Before creating and running your client applications, make sure that the PVA Agent on your
server is installed and running properly.

On PSBM and Linux, the pvaagent command line utility is used for starting, stopping,
restarting, and getting the current status of PVA Agent. The command is executed on the
server where Agent is installed. The available options are:
pvaagent start
pvaagent stop
pvaagent restart
pvaagent status

In the following example, the pvaagent status command reports that Agent is
functioning properly:
[root@dhcp0-190 ~]# pvaagent status
pvaagent (pid 31615 29644 25012 22861 8362 7073 7046 7036 7035 7029 7028 7026
7025 7023 7021 7019 7018 7017 7016 7013 7012 7011 7010 7009 7008 7007 7006 7004
7003 7002 7001 7000 6999 6998 6997 6996 6995 6994 6993 6992 6991 6990 6989 6988
6987 6986 6985 6984 6632) is running...
[root@dhcp0-190 ~]#

When Agent is stopped, the output of the same command will be as follows:
[root@dhcp0-190 ~]# pvaagent status
pvaagent is stopped

If something is wrong with Agent, the output may contain additional messages describing the
problem. In such a case, try restarting the Agent service using the pvaagent restart
command:
[root@dhcp0-190 ~]# pvaagent restart
Shutting pvaagent: [OK]
vzaproxy: no process killed
Stopping slapd: [OK]
Checking configuration files for slapd: [OK]
Starting slapd: [OK]
Starting pvaagent: [OK]
[root@dhcp0-190 ~]#

On Windows, Agent runs as a Windows service. You can manipulate it by going to the
Services console which is located in the Control Panel / Administrative Tools folder, and
selecting the PVA agent service from the list.

13

Getting Started

Location of XSD and WSDL
The XML Schema is documented in the Parallels Agent XML Reference guide, which is a
companion to this book. The guide provides specifications and descriptions of the data
types, the request and response messages, and includes XML code samples. Please use it
as a reference when programming with either the XML or the SOAP API.

When programming with the SOAP API you'll need to know the location of the WSDL
documents in order to generate proxy classes. Please see the the Using SOAP API chapter
(p. 90) of this guide for details.

14

Getting Started

Agent Architecture

Figure 1: Agent Architecture

PVA Agent is not a single executable or a single process. It is a combination of processes,
communicating with each other by means of sockets or pipes. The core entities of Agent
architecture are operators and directors.

A director is responsible for message routing inside Agent. It determines which internal Agent
component should serve an incoming request and to which client a particular reply should be
sent.

An operator is a process that is forked or spawned from a director process. There's a set of
Agent operators, each of which provides a specific type of functionality. For example, the
vzaenvm or vzpenvm operators provides the functionality for managing Containers and
virtual machines respectively, the vzarelocator operator provides the functionality for
migrating a Container, etc. The diagram above illustrates the Agent component structure. A
client connects to Agent through the operator Connection (a special operator, which is
created for every client connection and which serves as gateway between a client and a
director). The client sends XML messages to the director. Based on the information provided
in the request, the director determines the operator that the message should be sent to for
processing. The operator processes the message, takes the appropriate action, and
generates a reply which is then routed back to the client.

15

Getting Started

The operators are divided into four major groups:

• On-demand operators. These operators are handling synchronous requests ("one
request, one reply"). An on-demand operator is invoked by the director exactly once per
request. Once the operator is invoked, it processes the request, takes the appropriate
action, and sends the results back to the client. The majority of the Agent API requests
are targeted at and processed by the on-demand operators.

• Periodic Operators (collectors). These operators are collecting statistical data on a
periodic basis and can send it to the client at the specified time intervals at the client's
request. These operators use asynchronous messaging ("one request, many replies").

• Event Reporters. Event reporters monitor the system for critical system events, such as
server configuration changes or server status changes. These operators are subscription-
based, meaning that the client subscribes to the event notification service and the
operator notifies the client (directly or via e-mail) every time an event takes place. The
client can cancel the subscription at any time.

• System Operator. This operator is used to log on to Agent, manage Agent configuration,
see the state of the operators and directors, verify Agent version, subscribe to an event
notification service, and to perform some other system tasks.

PVA Agent API consists of interfaces that provide access to their respective server-side
operators. There's one API interface for each operator. In this guide, we will discuss some of
the most commonly used operators and interfaces. For the complete list of interfaces, see
the PVA Agent XML API Reference guide.

16

Getting Started

Connectivity
The following table describes the connection types, protocols, and port numbers that your
client program can use to communicate with PVA Agent. Please note that depending on
whether you send requests to a Management Node or to a Slave (or standalone) node,
different port numbers are used.

Connection Description

SSL over TCP/IP This is the recommended option for permanent connections. Agent
on a Management Node is listening on port 4534.

Agent on a Slave (or standalone) node is listening on port 4434.

TCP/IP Plain TCP/IP connection. No encryption is used so this connection
should be used with care.

Agent on a Management Node is listening on port 4533.

Agent on a Slave (or standalone) node is listening on port 4433.

Unix Domain sockets Unix-type connectivity. No encryption is used with this connection
type.

Named Pipes Windows Named Pipes. No encryption.

SOAP over HTTP or HTTPS Web Services clients.

17

Getting Started

Authentication Concepts
The first thing that a client program must do is log in to PVA Agent using a valid user name
and password. Agent uses this information to verify that the user exists in the user database
(called authentication database) and that the supplied password is valid. If the user is in fact
who he or she claims to be, the user security settings are retrieved from the database and
the values stored in it are used to determine the user access rights. Agent uses the following
authentication databases:

• System Authentication Database. This is the user registry of the host operating system.
This basically means that you can log on to Agent using an account that exists in the
operating system of the host server. In fact, when Agent is first installed, the only account
that you can use to log on to it is the system administrator account, such as root in
Linux/PSBM or Administrator in Windows. By default, the host system administrator
is granted all access rights in Agent, meaning that the user can execute any of the Agent
API calls, and that the user has full access to the host server and all of its virtual
environments

• Parallels Internal Authentication Database. Virtuozzo Containers software comes with it's
own internal authentication database. This database is used to store the Virtuozzo and
Agent specific authentication information. For example, the built-in security roles used in
Virtuozzo Tools are stored in this database. You can use this database to store your own
Agent users. In addition, the database is used to store the Agent specific security profiles
(permissions and access rights) for the users that are stored in the System Authentication
Database (described above) and for the external users (described below).

• External Authentication Database (LDAP-compliant directory). The third authentication
database type is an external LDAP-compliant directory, such as Active Directory or ADAM
on Windows, or OpenLDAP on Linux. Agent can perform user authentication against an
existing directory. This gives you flexibility to use existing user databases without
duplicating the users in the Parallels Internal Database. The only thing that you will have to
do is to create Agent security profiles for these users, which can be done through
Virtuozzo Tools or programmatically through Agent. The security profiles will be stored in
the Agent Internal Database and will be internally linked to the user accounts stored in the
external LDAP directory. This way, you can authenticate a user against an external LDAP
directory but the authorization of that user (determining the user access rights) will be
performed using the user security profile in the Parallels Internal Database.

18

Getting Started

Realms

When working with the PVA Agent API, you'll see a parameter named realm in the user
authentication and authorization related calls. A realm represents an authentication database.
It's a definition that consists of the database name, the connection parameters, and the
database ID, which is called Realm ID. Realm definitions are stored in the Agent configuration
on the host server. Before you can use an authentication database, it must be defined as a
realm in the Agent configuration. At least two realm definitions are created at the time the
Agent software is installed: the System Realm and the Internal Realm (p. 17). If you are
planning on using an external LDAP directory as your user database, you will have to create a
realm representing it first. For more info and examples, please see the Login and Session
Management section (p. 46).

Authorization

Authorization in PVA Agent is based on the concept of security roles. A security role is
identified by its unique name and contains a list of Agent tasks that it is allowed to perform.
An administrator would first create a security role granting the desired Agent access rights to
it. An administrator would then create a role assignment. Role assignment is a logical
grouping of users belonging to the same security role. Role assignment has a property called
scope. A scope is the logical area of a PVA system where this role assignment is allowed to
operate. Scope examples include the entire host server together with virtual environments
hosted by it, a particular Container or a Virtual Machine, or a group of virtual environments.

For example, you can create a security role that can start, stop, and restart a virtual
environment. You can then create a user (or multiple users) and add them to that role. At the
same time, you create a scope containing a list of some existing virtual environments and
select it to be the scope of that role assignment. As a result, your user(s) will be allowed to
start, stop, and restart the virtual environments specified in the scope. They will not be
allowed to perform any other operations, and they will not have access to other virtual
environments that may exist on the same host.

19

Getting Started

Terminology
The table below describes some of commonly used PVA Agent terms:

Term Description

Virtual environment Virtual environment is a virtual server based on any of the
Parallels virtualization technologies. This can be a Virtuozzo
Container or a Parallels Virtual Machine.

Environment ID (eid) This is a globally unique ID that is assigned to every physical
server and virtual environment in the Agent infrastructure. As
soon as Agent is installed on a physical server, the server is
assigned an ID. Every virtual environment created on the server
is also assigned a globally unique ID. Environment IDs are
stored internally by Agent and are used as references in all other
API calls that perform operations on them.

Virtuozzo Container ID Virtuozzo Container ID is a Virtuozzo-level ID, which is assigned
to every Container when it is created. This ID is unique only
within the context of a given host server. The ID is not to be
confused with the Environment ID described above, which is a
universally unique Agent-level ID.

Management Node, Slave Node Physical servers can be organized in a hierarchy where there's
one Management Node and many Slave Nodes.

Management Node administers the entire group by allocating,
monitoring, and controlling the group resources. Management
Node is also capable of accessing any Slave Node in a group,
meaning that once a client program is connected to the
Management Node, it can send requests to any Slave Node in
the group.

Realm Realm is a collection of parameters that define an authentication
database containing the Agent user and group data. Agent
supports a number of different databases, including operating
system user registries and LDAP-compliant directories. Realm
definitions are stored in the Agent configuration. Every realm is
assigned a universally unique ID by Agent when it is created.

Using XML API

The material in this chapter is intended for developers who would like to develop client
applications using XML API. This chapter does not provide general information on XML. We
assume that you are comfortable working with XML and have some experience working with
XML Schema language (also referred to as XML Schema Definition or XSD).

In This Chapter

XML API Basics...20
Creating a Simple Client Application..35
Login and Session Management ...46
Container and Virtual Machine Templates..55
Creating and Configuring Virtuozzo Containers..63
Creating and Managing Parallels Virtual Machines ...74
Performance Monitor ..78
Events and Alerts ..84
Request Routing ...87

XML API Basics
This section describes the main principles of the PVA Agent XML API and technologies it is
built upon. It then provides technical details on the PVA Agent XML message format,
complete with guidelines and examples. It concludes with the description of error handling in
API calls.

C H A P T E R 3

Using XML API

21

Using XML API

XML Schema

XML Schema is an XML document that defines how the XML data must be organized.

The XML Schema:

• Defines elements that can appear in a document

• Defines attributes that can appear in a document

• Defines which elements are child elements

• Defines the order of child elements

• Defines the number of child elements

• Defines whether an element is empty or can include text

• Defines data types for elements and attributes

• Defines default and fixed values for elements and attributes

The PVA Agent XML Schema defines every message that you can send and receive. This
means that every possible request and response message is strictly defined and must be
structured and formatted according to the Schema specifications. PVA Agent XML API is
based on the XML Schema 1.1 standard.

The PVA Agent XML Schema files (XSDs) are not included in the Parallels Server Bare Metal
or Virtuozzo Containers distribution. Instead, the XML Schema is documented in the
Parallels Agent XML Reference guide, which is a companion to this book. The guide
provides specifications and descriptions of data types, request and response messages, and
includes XML code samples. Please use it as a reference when programming with either the
XML or the SOAP API.

Using XML API

Agent Messages

In order to build XML messages correctly and to take full advantage of the available options,
it is important to understand the basic building blocks of a message. This section describes
how an Agent message is organized, and provides the necessary specifications and
examples.

In This Chapter

XML Message Specifications...23
XML Message Examples ...25
Message Header...27
Message Body..32
The Null-Terminating Character...33

C H A P T E R 4

23

Using XML API

XML Message Specifications

The XML message specifications in the Agent documentation are described using tables,
similar to the following example:

Name Min/Max Type Description

login

{

 name 1..1 base64Binary User name.

 domain 0..1 base64Binary Domain.

 realm 1..1 guid_type Realm ID.

 password 1..1 base64Binary User password.

 expiration 0..1 int Custom timeout value.

}

The information in a table is based on a corresponding XML Schema and describes the
format of a request or response message, or the format of a data type.

Each row in a table represents an XML element. The elements are displayed in the order they
are defined in the XML Schema.

The definitions for the table columns are as follows:

Name. Specifies an XML element name. The curly brackets represent the standard XML
Schema xs:sequence element. This means that the elements inside the brackets are the
child elements of the element that precedes the opening bracket. In our example, the name,
domain, realm, password, and expiration elements are children of the login
element. The following is a sample XML code, built according to this specification:
<login>
 <name>bXluYW1l</name>
 <domain>bXlkb21haW4=</domain>
 <realm>bXlyZWFsbQ==</realm>
 <password>bXlwYXNz</password>
 <expiration>1000</expiration>
</login>

Min/Max. Specifies the cardinality of an element (the number of its minimum and maximum
occurrences) in the following format:

minOccurs..maxOccurs

0 in the first position indicates that the element is optional.

1 in the first position indicates that the element is mandatory and that it must occur at least
once.

24

Using XML API

A number in the second position indicates the maximum allowable number of occurrences.
The [] (square brackets) in the second position indicate that the maximum number of the
element occurrences is unbounded, meaning that the element may occur as many times as
necessary in the same XML document at the specified position.

Type. Specifies the element type. The following element types are used in the schema:

• Standard simple types: int, string, base64Binary, etc.

• Custom simple types. These types are usually derived from standard simple types with
additional restrictions imposed on them.

• Custom complex types.

Description. The description column contains the element description and provides the
information about its usage.

25

Using XML API

XML Message Examples

The following table contains an examples of a valid Agent request message:

XML element Description

<packet version="4.0.0" id="2"> This is the root element of any message.
The id attribute specifies the packet ID.
The version attribute specifies the
protocol version.

 <target>vzaenvm</target> The target Agent operator that the request
should be sent to for processing.

Note: When using the system
operator, do not include the
target element. The system
operator is the only exception. All
other operators require the
target element.

 <data> The data block contains the message
body.

 <vzaenvm> Every request begins with the name of the
interface providing the desired
functionality. The interface name is always
the same as the name of the operator (see
target element above).

 <get_list> This is the name of the API call.

 <status> This and the following elements are the
API call parameters.

 <state>6</state> Parameter.

 </status> Parameter.

 </get_list> Closing tag.

 </vzaenvm> Closing tag.

 </data> Closing tag.

</packet> Closing tag.

A response message may look similar to the following example:

XML element Description

26

Using XML API

<?xml version="1.0" encoding="UTF-
8"?><packet
xmlns:ns1="http://www.swsoft.com/webser
vices/vzl/4.0.0/protocol"
xmlns:ns2="http://www.swsoft.com/webser
vices/vzl/4.0.0/envm"
xmlns:xsi="http://www.w3.org/2001/XMLSc
hema-instance" version="4.0.0"
priority="0" id="9c49ba5920t6784rdb0"
time="2009-03-13T12:59:03+0000">

The root element. The time attribute
specifies the response date and time. The
version attribute specifies the protocol
version.

 <ns1:origin>vzaenvm</ns1:origin> The name of the operator that processed
the request and generated this response
as a result.

 <ns1:target>vzclient7-b1e6bc1e-4231-
b541-819a-191cd7fec5fb</ns1:target>

The client who sent the initial request
message. This value is generated and
used internally by Agent.

 <ns1:data> The message body.

 <ns2:vzaenvm> Just like a request message, every
response message also begins with the
name of the interface. The block that
follows this element contains the returned
data.

 <ns2:eid>fb07fdd8-1336-8d44-
bc47-658c06fffb6b</ns2:eid>

Data.

 </ns2:vzaenvm> Closing tag.

 </data> Closing tag.

</packet> Closing tag.

27

Using XML API

Message Header

The two main sections of any Agent XML message is the header and the body. The header
provides message routing and control information. The body of the message contains the
actual request (or response) parameters and data. The packet element is the root element
of every message. Both the header and the body of a message reside within the same parent
packet element.

The following table contains the Agent message header specification, as defined in XML
Schema.

Message header specification:

Name Min..Max Type Description

packet The root element of an Agent XML message.

{

 cookie 0..1 string User-defined information describing the
message, or any other type of information.
The data specified here remains unchanged
during the request/response operation, i.e. if
you put some data into this element in the
request message, the response message
will contain the same data.

 target 0..[] string In request messages, this element must
contain the name of the operator to which
the request should be sent for processing.

Note: When using the system
operator, do not include the
target element. The system
operator is the only exception. All
other operators require this element.

The name of the operator is always the
same as the name of the corresponding
interface that you are using. For example, if
you are using a call from the vzaenvm
interface, the name of the target operator is
also vzaenvm.

Multiple targets may be specified if you are
including multiple calls in a single request.

In response messages, this element
contains the name of the client that
originated the request (the value is
generated and used internally by Agent).

 origin 0..1 string The name of the operator that generated the
response. Included in response messages
only.

28

Using XML API

 src 0..1 routeType The source routing information. This field is
automatically populated by the director on
the server side when a message is routed
from the corresponding operator to it. The
same information is also duplicated in the
dst element (described below) when a
response is generated and is sent back to
the client.

 {

 director 0..1 string The name of the director to which the target
operator belongs.

 host 0..1 string The Agent host ID. Used by Agent to
determine the host address. Should be
either contained in the Agent configuration
(global mapping) or be a result of exclusive
connect.

 index 0..1 string For on-demand operators, specifies a
particular target.

 target 0..1 string Contains the origin information when a
packet is sent remotely.

 }

 dst routeType The destination routing information.

In request messages, use this structure to
specify the server to which you want to
forward the request. For example, if you are
sending a request to the Agent on the host
server but would like the request to be
processed inside a virtual environments,
specify the EID for the virtual environment
using the dst/host parameter.

In the response messages, this information
is automatically populated by the director on
the server side.

 {

 director 0..1 string The name of the director to which the target
operator belongs. Populated automatically
by the director.

 host 0..1 string Destination server EID. When using the
message forwarding feature, it is used for
specifying the ID of the target server.

 index 0..1 string For on-demand operators, specifies a
particular target. Populated automatically by
the director.

 target 0..1 string Contains the origin information when a
packet is sent remotely. Populated
automatically by Agent.

 }

29

Using XML API

 session string Session ID.

In the request messages, this field is used to
specify the session that should be used to
process the request.

In the response messages, the ID indicates
the session that was used to process the
request.

The session ID is obtained from the
response message of the system/login
API call after a successful login.

}

The packet element may optionally contain attributes described in the following table.

Attributes of the <packet> element:

Attribute Type Description

version string Parallels Agent protocol version number.
The current protocol version number is
4.0.0. The older 3.0.3 protocol is also
supported in Virtuozzo Containers 4.0.

id string Packet ID. If included in a request message, the
response will contain the same ID. This allows the
response to be correlated with the original request.
The attribute must also be included if you want to be
notified in case of the request timeout, or if the
packet was dropped on the server side for any
reason. As a rule of thumb, you should always
include this element in all of your outgoing packets.

The value should normally be a string containing an
integer value, but it can also contain other characters
if needed.

priority string Packet priority. Specifies the significance of the
message when it is placed into a message queue.
The higher the priority value, the less significant the
packet is. The value of zero is the default priority.

Priorities range from -3000 to 3000.

-3000 to -1000 for heavy messages.

-999 to 999 for normal messages.

1000 to 3000 for urgent messages.

time datetime_type The time when the packet was sent; in the ISO-8601
format: (e.g. "2007-02-04T08:55:51+0000").

30

Using XML API

progress string Use this attribute to enable the progress reporting for
long operations if you would like to receive
intermediate results and to keep track of the request
processing. Please note that not all operations
actually generate progress reports.

The possible values are:

on -- the progress reporting is on.

off (default if the attribute is omitted) -- the
progress reporting is off.

When you turn the progress reporting on, you must
also include the id attribute (above) specifying the
message ID.

log string When present, the automatic progress reporting is
logged for the operations supporting it. Switch this
to “on” if you're planning to start an operation and
disconnect from Agent before the operation is
completed. By doing so, you'll be able to reconnect
later and check the log files for the results of your
operation.

The requests marked as Logged Operation in the
XML API Reference support this feature.

Possible values are:

on -- the logging is turned on.

off (default) -- the logging is off.

type int *** INTERNAL ***

Bit field for the internal type of the message.

#define UNFINISHED 0x00000001

#define RESPONSE 0x00000002

#define RESCHEDULE 0x00000004

#define TIMEOUT 0x00000008

timeout int The timeout value which will be used for handling
this request. The value can be specified in the
incoming packet or it can be sent back from the
operator, notifying the director about the time it is
going to handle it. The value is set in seconds.

timeout_limit int *** INTERNAL ***

Timeout limit for message processing. Used by an
operator in determining the validity of its timeout.

uid int *** INTERNAL ***

UID of the user sending this packet.

Example:

The following is an example of an Agent message header, built according to the
specifications above. In a real message, the values of the XML elements would be substituted
with the appropriate names, IDs, etc.

31

Using XML API

<packet version="4.0.0" id="500">
 <cookie>I'm a cookie holding some text</cookie>
 <target>operator_name</target>
 <dst>
 Hosttarget_server_EID</host>
 </dst>
 <session>session_id</session>
</packet>

32

Using XML API

Message Body

Message body contains the actual request or response parameters and data. The data
element is the root element of the message body tree. It is followed by the name of the
interface that you would like to use, the name of the call, and the call parameters.

Note: There must be one and only one data element in any given message.

The request message:

The following XML code example is a complete Agent request message. As you already
know, the packet element is the root element of every Agent message. The target
element specifies the name of the target operator. The message body begins with the data
element. The envm element specifies the name of the interface. The available interfaces are
documented in the Parallels Agent XML API Reference documentation. The get_info
element is the name of the call. The config element specifies that the information about the
host configuration is requested.
<packet version="4.0.0" id="2">
 <target>envm</target>
 <data>
 <envm>
 <get_info>
 <config/>
 </get_info>
 </envm>
 </data>
</packet>

The response message:

The following example demonstrates a complete response message. The body of the
message begins with the data element which is followed by the name of the interface that
was used in the corresponding request message, and the return parameters.
<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/protocol"
xmlns:ns3="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:ns2="http://www.swsoft.com/webservices/vzl/4.0.0/envm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="0" id="ac49b7e2c8t6784r580" time="2009-03-11T16:09:33+0000">
<ns1:origin>envm</ns1:origin>
<ns1:target>vzclient4-b1e6bc1e-4231-b541-819a-191cd7fec5fb</ns1:target>
<ns1:dst>
 <director>gend</director>
</ns1:dst>
<ns1:data>
 <ns2:envm>
 <ns2:env xsi:type="ns3:envType">
 <ns3:parent_eid>00000000-0000-0000-0000-000000000000</ns3:parent_eid>
 <ns3:eid>b1e6bc1e-4231-b541-819a-191cd7fec5fb</ns3:eid>
 <ns3:status xsi:type="ns3:env_statusType">
 <ns3:state>6</ns3:state>
 </ns3:status>
 <ns3:alert>0</ns3:alert>

33

Using XML API

 <ns3:config xsi:type="ns3:env_configType">
 <ns3:name>mccp40.qa.sw.ru</ns3:name>
 <ns3:hostname>mccp40.qa.sw.ru</ns3:hostname>
 <ns3:address>
 <ns3:ip>10.27.1.174</ns3:ip>
 </ns3:address>
 <ns3:address>
 <ns3:ip>10.37.130.2</ns3:ip>
 </ns3:address>
 <ns3:address>
 <ns3:ip>10.37.131.2</ns3:ip>
 </ns3:address>
 <ns3:architecture>x86_64</ns3:architecture>
 <ns3:os xsi:type="ns3:osType">
 <ns3:platform>Linux</ns3:platform>
 <ns3:kernel>2.6.18-028stab061.6</ns3:kernel>
 <ns3:name>Parallels Server Bare Metal 5.0</ns3:name>
 </ns3:os>
 <ns3:type>generic</ns3:type>
 <ns3:nameserver>10.27.0.1</ns3:nameserver>
 <ns3:child_type>parallels</ns3:child_type>
 <ns3:child_type>virtuozzo</ns3:child_type>
 </ns3:config>
 <ns3:virtual_config xsi:type="ns3:venv_configType"/>
 </ns2:env>
 </ns2:envm>
</ns1:data>
<src>
 <director>gend</director>
</src>
</packet>

The body of a response message may, in general, contain one of the following types of
information:

• The actual information requested, as shown in the example above.

• The <OK/> element if the call doesn't return any data by definition. The <OK/> means
that the operation completed successfully.

• An error information, in case of a failure.

A complete XML Schema specification exists for every possible response of every Agent XML
API call, and is described in the corresponding section of the Parallels Agent XML API
Reference guide.

The Null-Terminating Character

When an XML request message is sent to Agent from a client program, it must be terminated
with a binary zero character (written as '\0'). The null-terminating character is used by
Agent to determine the end of the message.

34

Using XML API

Error Handling

When an error occurs during the request processing, the error information is returned to the
client as an XML message. A single response message may contain multiple errors if the
original request contained more than one request. A single request may also produce more
than one error message. The error information is included in the message body and may be
placed at the various levels of the message body hierarchy depending on the original location
of the request or the element that caused the error. The format of the XML structure
containing the error information is as follows:
<data>
 <operator_name>
 <error>
 <code>error_code</code>
 <message>error_message</message>
 </error>
 </operator_name>
</data>

The element that we described as operator_name in the example above will actually have the
same name as the Agent operator that generated the response. The error information
consists of a numeric code and a string describing the problem. Agent has its own list of
errors. The errors reported by various system utilities and the internal calls invoked by Agent
operators are automatically translated to their client-level Agent equivalents. This means that
regardless of the computing platform, the error codes and descriptions will always be
consistent.

The following is an example of an error message produced by the login call of the system
interface.

Input:
<packet version="4.0.0" id="2">
 <data>
 <system>
 <login>
 <name>cm9vdA==</name>
 <realm>00000000-0000-0000-0000-000000000000</realm>
 <password>bXlwYXNz</password>
 </login>
 </system>
 </data>
</packet>

Output:
<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/protocol"
xmlns:ns2="http://www.swsoft.com/webservices/vzl/4.0.0/system"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="0" id="10c49ba654bt1649rdb0">
<ns1:origin>gend</ns1:origin>
<ns1:target>vzclient7-b1e6bc1e-4231-b541-819a-191cd7fec5fb</ns1:target>
<ns1:dst>
 <director>gend</director>
</ns1:dst>

35

Using XML API

<ns1:data>
 <ns2:system>
 <ns1:error>
 <ns1:code>401</ns1:code>
 <ns1:message>Invalid function was specified: login.</ns1:message>
 </ns1:error>
 </ns2:system>
</ns1:data>
</packet>
</src>
</packet>

Creating a Simple Client Application
In this section, we'll create a simple client application that will get you started with PVA Agent
programming. We will be using Perl to write our sample program. The complete program
code is included in The Complete Program Code section (p. 44).

If you are using Linux, you probably have Perl already installed on your machine. If you are
using Windows, you can download Perl for Windows from the Internet. As an example,
ActivePerl for Windows is available as a free download at http://www.activestate.com.

A client program can communicate with Agent using the secure SLL over TCP/IP or plain
TCP/IP connection. The TCP/IP module comes standard with Perl. If you would like to
communicate with Agent securely, you will need the IO::Socket::SSL module that provides
SSL support for Perl. The module can be downloaded from CPAN here:
http://search.cpan.org/~behroozi/IO-Socket-SSL-0.97/SSL.pm.

The SSL package requires another module called Net::SSLeay, which can also be
downloaded from CPAN by going to this URL:
http://search.cpan.org/~flora/Net_SSLeay.pm-1.30/SSLeay.pm.

Both modules come with extensive documentation and easy-to-follow installation
instructions.

Now that we have our development environment set up, we are ready to write our program.
The program will be as basic as it can possibly be but it should suffice as an entry point into
the Agent programming.

36

Using XML API

Connecting to Agent

Create a new text file named AgentExample1.pl and paste or type the following code into
it:
#!/usr/bin/perl -w

use strict;

Let's now add the code that will establish a connection with Agent.
#Set $SSL_ON = 1 if you wish to use secure connection.
use constant SSL_ON => 0;

#Connection information.
#Change the IP address to your own server address.
use constant CONF_CONNECTION => {
 ip => '192.168.0.37',
 port => &SSL_ON ? 4434 : 4433,
 class => &SSL_ON ? 'IO::Socket::SSL' : 'IO::Socket::INET'
};

eval "use ".&CONF_CONNECTION->{class};
die $@ if $@;

#Null-terminating character (packet separator).
use constant MSG_TERMINATOR => "\0";
local $/ = &MSG_TERMINATOR;

In the code above we create a class CONF_CONNECTION containing the Agent connection
information. By default we are using the IO::Socket::INET module to communicate with
Agent via plain TCP/IP. If you would like to communicate with Agent securely, set the
$SSL_ON constant to 1. Note, that the SSL connection can be established only if the -
cipher (it should be done manually) option is specified and the appropriate port is opened.

The MSG_TERMINATOR constant is a binary zero character which we'll be appending to
every Agent request message (every Agent request must be null-terminated). The following
code creates a socket thereby getting a connection to Agent.
#Create socket
print "Connecting to Agent...\n\n";
our $socket = &CONF_CONNECTION->{class}->new(
 PeerAddr => &CONF_CONNECTION->{ip},
 PeerPort=> &CONF_CONNECTION->{port},
 Proto => 'tcp',
);

unless($socket) {
 die "Connection refused: $!"
}

We can now read the Agent response from the socket as follows:
#Read the greeting message from Agent.
my $hello = $socket->getline;
chomp($hello);

37

Using XML API

print $hello;

Save the file now and run the program by typing perl AgentExample1.pl at the
command prompt. You should see the output on your screen similar to the following:
<packet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="0" priority="0"
version="4.0.0">
 <origin>vzclient148-4fce28dd-0cd3-1345-bb94-3192b940fb90</origin>
 <target>agent</target>
 <data>
 <ok/>
 <eid>4fce28dd-0cd3-1345-bb94-3192b940fb90</eid>
 </data>
</packet>

If you see the above message on the screen, it means that Agent is functioning properly, and
that you are connected to it. If you don't see the message, make sure that Agent is running
(p. 12) and that you can ping the server from your client computer.

Let's now examine the response that we received from Agent. As you can see, it is an XML
document. In fact, this is the very first message that you receive from Agent every time you
connect to it. It is basically a greeting message from Agent, which means that the initial
connection has been established successfully. The eid element contains the EID (p. 19) of
the host server that your program is now connected to.

38

Using XML API

Logging In

The connection to Agent is broken automatically in half a minute in case no session is
opened.

Once you are connected to Agent, the first thing that you have to do is log in. You do that by
executing the login API call from the system interface supplying the user credentials,
which includes a user name, a password, and a Realm ID. Since you may not know the
Realm ID in advance, you would normally retrieve the list of Realms using the
system/get_realm call. This is the only call that can be executed without being logged in.
First, we have to compose our message:
#XML message. Retrieving the list of realms from the host.
my $request=qq~
<packet version="4.0.0" id="2">
 <data>
 <system>
 <get_realm/>
 </system>
 </data>
</packet>
~;

The $request variable in the code above now contains our XML message. The next code
segment will write the XML message to the socket that we created earlier:
#Write the XML message to the socket.
$socket->printflush($request.&MSG_TERMINATOR);

Please note that we appended the binary zero character contained in the MSG_TERMINATOR
constant to the message. Failure to do so will make the request unrecognizable to Agent.
Once again, we will read the output from the socket and will display it on the screen.
#Read the response and display it on the screen.
my $response = $socket->getline;
chomp($response);
print $response;

The response to this message will contain the complete list of Realms defined in the Agent
configuration on the host server. It will look similar to the following:
<packet id="2" version="4.0.0" priority="0">
 <origin>system</origin>
 <target>vzclient8-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
 <data>
 <system>
 <realms>
 <realm>
 <login>
 <name>Y249dnphZ2VudCxkYz1WWkw=</name>
 <realm>458d583f-f2d8-7940-a9d3-a9a3d2ec1509</realm>
 </login>
 <builtin/>
 <name>Parallels Internal</name>
 <type>1</type>
 <id>458d583f-f2d8-7940-a9d3-a9a3d2ec1509</id>
 <address>vzsveaddress</address>

39

Using XML API

 <port>389</port>
 <base_dn>ou=4fce28dd-0cd3-1345-bb94-3192b940fb90,dc=vzl</base_dn>
 <default_dn>cn=users,ou=4fce28dd-0cd3-1345-bb94-
3192b940fb90,dc=vzl</default_dn>
 </realm>
 <realm>
 <builtin/>
 <name>System</name>
 <type>0</type>
 <id>00000000-0000-0000-0000-000000000000</id>
 </realm>
 <realm>
 <builtin/>
 <name>Virtuozzo Container</name>
 <type>1000</type>
 <id>00000000-0000-0000-0100-000000000000</id>
 </realm>
 </realms>
 </system>
 </data>
</packet>

Assuming that PSBM or Virtuozzo Containers software has just been installed on our system,
we will use the system administrator account to log in to Agent. The System Realm (p. 17)
from the output above refers to the user registry on the host OS, so this is the Realm that we
want. In order to log in, you will also need to know the administrator password. In the
following example, we are logging in to Agent installed on a Linux system using the root
account. Don't forget to substitute the password value with your root password. If you are
using a Windows-based system, use your Windows administrator account. Please note that
the name, realm, and password values are Base64-encoded in accordance with the schema.
#XML message. Logging in.
$request=qq~
<packet version="4.0.0" id="3">
 <data>
 <system>
 <login>
 <name>cm9vdA==</name>
 <realm>00000000-0000-0000-0000-000000000000</realm>
 <password>bXlwYXNz</password>
 </login>
 </system>
 </data>
</packet>
~;

We will now write the XML message to the socket the same way we did when we were
retrieving Realms in the previous step.
#Write the XML message to the socket.
$socket->printflush($request.&MSG_TERMINATOR);

Once again, we are reading the output from the socket and displaying it on the screen.
#Read the response and display it on the screen.
$response = $socket->getline;
chomp($response);
print $response;

40

Using XML API

If the supplied credentials were valid, the response message will contain the user security
information, and will look similar to the following example:
<packet id="3" priority="0" version="4.0.0">
 <origin>system</origin>
 <target>vzclient19-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
 <data>
 <system>
 <token>
 <user>AQUAAAAAIAHdKM5P0wxFE7uUMZK5QPuQAAAAAA==</user>
 <groups>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAAAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAQAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQCgAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAgAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAwAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQBAAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQBgAAAA==</sid>
 <sid>AQUAAAAAIAHdKM5P0wxFE7uUMZK5QPuQAAAAAA==</sid>
 </groups>
 <deny_only_sids/>
 <privileges/>
 </token>
 </system>
 </data>
</packet>

If you see a message like that on your screen, it means that you are now logged in to Agent
and that a permanent session has been created for the user. A permanent session is
associated with the physical connection that we've established earlier and it never expires.

Let's examine the rest of the elements in the response message. The packet element
contains the message ID, which, as you can see, is the same as the one we specified in the
request message. The target element contains the ID of our client connection (the value is
assigned and used by Agent internally). The origin element contains the name of the Agent
operator that processed the request on the server side. The user element contains the SID
(security ID) of the user. The sid elements within the groups element contain the security
IDs of the groups to which the user belongs as a member.

41

Using XML API

Retrieving Virtual Environment List

To retrieve the virtual environments list from the host server, we will use the get_list call
from the vzaenvm interface (the Virtuozzo Container management operator).

#XML message. Getting the virtual environment list.
$request=qq~
<packet version="4.0.0" id="4">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <get_list/>
 </vzaenvm>
 </data>
</packet>
~;

#Write the XML message to the socket.
$socket->printflush($request.&MSG_TERMINATOR);

#Read the response and display it on the screen.
$response = $socket->getline;
chomp($response);
print $response;

The response will contain the list of EIDs (p. 19). The following is an example of the response
message:
<packet id="4" time="2007-08-29T22:51:52+0000" priority="0" version="4.0.0">
 <origin>vzaenvm</origin>
 <target>vzclient24-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
 <dst>
 <director>gend</director>
 </dst>
 <data>
 <vzaenvm>
 <eid>ba92bfb3-d97b-014f-a754-5b30528477c3</eid>
 <eid>e9ab2834-ed97-1f4b-bd41-81c27facfc30</eid>
 <eid>72145bf0-7562-43d4-b707-cc33d37e3f10</eid>
 <eid>6dbd99dc-f212-45de-a5f4-ddb78a2b5280</eid>
 </vzaenvm>
 </data>
 <src>
 <director>gend</director>
 </src>
</packet>

To complete this demonstration, we'll add a code to our program that will restart one of the
virtual environments from the list above.

42

Using XML API

Restarting a Virtual Environment

The restart call from the vzaenvm interface is used to restart a virtual environment. The
call accepts a single parameter: the EID of the virtual environment to restart. We will use the
EID of one of the virtual environments from the list that we retrieved in the previous step (p.
41).
#XML message. Restarting a virtual environment.
$request=qq~
<packet version="4.0.0" id="4">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <restart>
 <eid>e9ab2834-ed97-1f4b-bd41-81c27facfc30</eid>
 </restart>
 </vzaenvm>
 </data>
</packet>
~;

#Write the XML message to the socket.
$socket->printflush($request.&MSG_TERMINATOR);

#Read the response and display it on the screen.
$response = $socket->getline;
chomp($response);
print $response;

If the call succeeds, you should see an output similar to the following:
<packet id="4" time="2007-08-29T23:26:50+0000" priority="0" version="4.0.0">
 <origin>vzaenvm</origin>
 <target>vzclient27-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
 <dst>
 <director>gend</director>
 </dst>
 <data>
 <vzaenvm>
 <ok/>
 </vzaenvm>
 </data>
 <src>
 <director>gend</director>
 </src>
</packet>

The response is a standard Agent "OK" message, which is returned when an API call doesn't
return any data. It simply means that the request executed successfully.

43

Using XML API

Summary

In this section, we've created a simple client demonstrating:

1 How to establish a connection with Agent.

2 How to log in to Agent.

3 How to retrieve the virtual environment list from the host server.

4 How to restart a virtual environment.

Steps 1 and 2 are the necessary steps that must be taken in any Agent application. The
steps 2 and 3 have demonstrated how to work with virtual environments. The vzaenvm
interface is not limited to those two tasks of course. You can refer to the Parallels Agent
XML Reference guide for the complete documentation of the vzaenvm and other interfaces.

44

Using XML API

The Complete Program Code
#!/usr/bin/perl -w

#Copyright (c) 2008 by SWsoft

use strict;

#Set $SSL_ON = 1 if you wish to use secure connection.
use constant SSL_ON => 0;

#Connection information.
use constant CONF_CONNECTION => {
 ip => '192.168.0.37',
 port => &SSL_ON ? 4434 : 4433,
 class => &SSL_ON ? 'IO::Socket::SSL' : 'IO::Socket::INET'
};

eval "use ".&CONF_CONNECTION->{class};
die $@ if $@;

#Null-terminating character (packet separator).
use constant MSG_TERMINATOR => "\0";
local $/ = &MSG_TERMINATOR;

#Create socket
print "Connecting to Agent...\n\n";
our $socket = &CONF_CONNECTION->{class}->new(
 PeerAddr => &CONF_CONNECTION->{ip},
 PeerPort=> &CONF_CONNECTION->{port},
 Proto => 'tcp',
);

unless($socket) {
 die "Connection refused: $!"
}

#Read the greeting message from Agent.
my $hello = $socket->getline;
chomp($hello);
print $hello;

print "\n";
print "------------------------\n\n";

#XML message. Getting the list of realms.
my $request=qq~
<packet id="2">
 <data>
 <system>
 <get_realm/>
 </system>
 </data>
</packet>
~;

#Write the XML message to the socket.

45

Using XML API

print "Getting a list of realms...\n\n";
$socket->printflush($request.&MSG_TERMINATOR);

#Read the response and display it on the screen.
my $response = $socket->getline;
chomp($response);
print $response;
print "\n";
print "------------------------\n\n";

#XML message. Logging on.
#Change the name and password to your
#administrator name and password.
$request=qq~
<packet version="4.0.0" id="3">
 <data>
 <system>
 <login>
 <name>cm9vdA==</name>
 <realm>00000000-0000-0000-0000-000000000000</realm>
 <password>bXlwYXNz</password>
 </login>
 </system>
 </data>
</packet>
~;

#Write the XML message to the socket.
print "Logging on...\n\n";
$socket->printflush($request.&MSG_TERMINATOR);

#Read the response and display it on the screen.
$response = $socket->getline;
chomp($response);
print $response;
print "\n";
print "------------------------\n\n";

#XML message. Getting a list of Virtuozzo Containers.
$request=qq~
<packet version="4.0.0" id="4">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <get_list/>
 </vzaenvm>
 </data>
</packet>
~;

#Write the XML message to the socket.
print "Getting a list of Containers...\n\n";
$socket->printflush($request.&MSG_TERMINATOR);

#Read the response and display it on the screen.
$response = $socket->getline;
chomp($response);
print $response;
print "\n";
print "------------------------\n\n";

46

Using XML API

#XML message. Restarting a Container.
#Change the EID to the EID of your Container.
$request=qq~
<packet version="4.0.0" id="4">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <restart>
 <eid>e9ab2834-ed97-1f4b-bd41-81c27facfc30</eid>
 </restart>
 </vzaenvm>
 </data>
</packet>
~;

#Write the XML message to the socket.
print "Restarting a Container...\n\n";
$socket->printflush($request.&MSG_TERMINATOR);

#Read the response and display it on the screen.
$response = $socket->getline;
chomp($response);
print $response;
print "\n";
print "------------------------\n\n";

Login and Session Management
The Agent login procedure comprises the following steps:

1 Getting a list of Realms and choosing the Realm against which to authenticate the user.
You can perform this first step without being logged in to Agent.

2 Log in using the name and password of the user from the selected Realm. If
authentication is successful, a permanent session will be created for the user.

3 Optionally, you may create an additional, temporary session for the user.

The following subsections describe each step in detail.

47

Using XML API

Retrieving Realm Information

To retrieve the list of the existing Realms, use the following request:
<packet version="4.0.0" id="2">
 <data>
 <system>
 <get_realm/>
 </system>
 </data>
</packet>

Once again, this call does not require you to be logged in. The Agent response will contain
the list of the available Realms and will look similar to the following:
<packet xmlns:ns2="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/dirm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="8c46e79de1t18ber68c"
priority="0" version="4.0.0">
<origin>system</origin>
<target>vzclient121-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<data>
 <system>
 <realms>
 <realm xsi:type="ns1:dir_realmType">
 <login>
 <name>Y249dnphZ2VudCxkYz1WWkw=</name>
 <realm>458d583f-f2d8-7940-a9d3-a9a3d2ec1509</realm>
 </login>
 <builtin/>
 <name>Parallels Internal</name>
 <type>1</type>
 <id>458d583f-f2d8-7940-a9d3-a9a3d2ec1509</id>
 <address>vzsveaddress</address>
 <port>389</port>
 <base_dn>ou=4fce28dd-0cd3-1345-bb94-3192b940fb90,dc=vzl</base_dn>
 <default_dn>cn=users,ou=4fce28dd-0cd3-1345-bb94-
3192b940fb90,dc=vzl</default_dn>
 </realm>
 <realm xsi:type="ns2:realmType">
 <builtin/>
 <name>System</name>
 <type>0</type>
 <id>00000000-0000-0000-0000-000000000000</id>
 </realm>
 <realm xsi:type="ns2:realmType">
 <builtin/>
 <name>Virtuozzo Container</name>
 <type>1000</type>
 <id>00000000-0000-0000-0100-000000000000</id>
 </realm>
 </realms>
 </system>
</data>
</packet>

The message above contains three Realm entries: Parallels Internal, System, and Virtuozzo
Container. The following describes each entry in detail.

48

Using XML API

Parallels Internal Realm

<realm xsi:type="ns1:dir_realmType">
 <login>
 <name>Y249dnphZ2VudCxkYz1WWkw=</name>
 <realm>458d583f-f2d8-7940-a9d3-a9a3d2ec1509</realm>
 </login>
 <builtin/>
 <name>Parallels Internal</name>
 <type>1</type>
 <id>458d583f-f2d8-7940-a9d3-a9a3d2ec1509</id>
 <address>vzsveaddress</address>
 <port>389</port>
 <base_dn>ou=4fce28dd-0cd3-1345-bb94-3192b940fb90,dc=vzl</base_dn>
 <default_dn>cn=users,ou=4fce28dd-0cd3-1345-bb94-
3192b940fb90,dc=vzl</default_dn>
</realm>

The Parallels Internal Realm is an authentication database that is installed on the host server
during the Virtuozzo Containers software installation. This database is used to store the
Virtuozzo Containers specific authentication information. Let's take a look at the XML
structure above. The type of the realm element is dir_realmType. It is a descendant of
the base realmType type and it is used to hold the information about an LDAP-compliant
directory. The type element specifies the Realm type -- the value of 1 (one) means LDAP
directory. The name element inside the login node is the user name that Agent will use to
bound to the directory instance. The name, in this case, is a distinguished name (DN)
identifying the user object in the directory. The user password is not included in the Realm
definition but is known to Agent. Agent uses this information to bound to the directory to
perform user authentication. The empty builtin element indicates that this is a built-in
Parallels Internal Realm (as opposed to custom Realms created by users). In fact, the rest of
the Realms in this example are built-in Realms. The address, port, base_dn, and
default_dn parameters describe the directory in terms of connectivity. Again, all of these
elements are used by Agent to bound to the directory instance. At this point they are of little
interest to us. The id element contains the Realm ID. This is the ID that you will use in all
other calls that require it, such as the login call that will be described later in this section.
Please note that the ID of the Parallels Internal Realm in your Virtuozzo Containers installation
may not be the same as the ID in our example. There can be only one Parallels Internal Realm
on any given physical computer.

System Realm

<realm xsi:type="ns2:realmType">
 <builtin/>
 <name>System</name>
 <type>0</type>
 <id>00000000-0000-0000-0000-000000000000</id>
</realm>

49

Using XML API

The System Realm represents user registry of the host operating system. When Agent is first
installed, you will not have any Agent-specific users in any of the other Realms except the
System Realm. If you have just started with Agent programming, use the system
administrator account to log in to it. Agent knows how to identify the user with system
administrator privileges and by default grants her/him unlimited access to the host server and
all of the Virtuozzo Containers hosted by it. The ID of the System Realm in your installation will
probably be the same as in this example (all zeros) but it is not guaranteed, so you should
obtain it from the Agent installed on your server. You find the System Realm record in the
result set by looking at the Realm type, which should be 0 (zero).

Virtuozzo Container Realm

<realm xsi:type="ns2:realmType">
 <builtin/>
 <name>Virtuozzo Container</name>
 <type>1000</type>
 <id>00000000-0000-0000-0100-000000000000</id>
</realm>

This Realm represents an operating system user registry inside a Virtuozzo Container. Use
this Realm if you would like to log in to Agent as a user of one of the Containers. Once again,
the ID of this Realm in your Virtuozzo installation may not be the same as the ID you see in
the example above. Always get the Realm ID from the Agent installed on your server.

External LDAP directories

In our example, we didn't have any Realms representing an external LDAP directory. These
Realms are added by Virtuozzo Containers system administrators when they want to perform
user authentications against an external LDAP directory. The Realm record would look
similarly to the Virtuozzo Internal Realm described above except that the builtin parameter
would not be present.

50

Using XML API

Logging In

We've demonstrated the login procedure in the beginning of this chapter when we created a
sample program (p. 38). This subsection describes the procedure in detail.

The initial login is performed by executing the system/login request:

<packet version="4.0.0" id="3">
 <data>
 <system>
 <login>
 <name>cm9vdA==</name>
 <realm>00000000-0000-0000-0000-000000000000</realm>
 <password>bXlwYXNz</password>
 </login>
 </system>
 </data>
</packet>

In this example, we are logging in as the root user (the name and the password values are
base-64 encoded according to the XML Schema). We are specifying the ID of the System
Realm that we retrieved earlier because root is the user of the host server. As a result,
Agent will try to find the user in the host operating system user registry and will verify that the
supplied credentials are correct. If we wanted to log in as a user from any other Realm, we
would execute the same call supplying the appropriate user name, password, and the Realm
ID.

When logging in as a user from the virtual environment Realm (another built-in Realm), the call
is executed slightly differently. Let's say that we want to log in to Agent as the root user
from one of the virtual environments running on the host. This is how you do it:
<packet version="" id="3">
 <data>
 <system>
 <login>
 <name>cm9vdA==</name>
 <domain>ZTlhYjI4MzQtZWQ5Ny0xZjRiLWJkNDEtODFjMjdmYWNmYzMw</domain>
 <realm>00000000-0000-0000-0100-000000000000</realm>
 <password>bXlwYXNz</password>
 </login>
 </system>
 </data>
</packet>

Compared to the previous login example, the XML packet above contains an additional
domain parameter. When logging in as a user from the virtual environment Realm, the
domain element must contain the EID of the Container. See Retrieving a List of virtual
environments section (p. 41) for an example on how to retrieve EIDs.

If the login is successful, the output will contain the user security information and will look
similar to the following:
<packet id="3" priority="0" version="4.0.0">
 <origin>system</origin>
 <target>vzclient19-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>

51

Using XML API

 <data>
 <system>
 <token>
 <user>AQUAAAAAIAHdKM5P0wxFE7uUMZK5QPuQAAAAAA==</user>
 <groups>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAAAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAQAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQCgAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAgAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQAwAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQBAAAAA==</sid>
 <sid>AQUAAAAAIADdKM5P0wxFE7uUMZK5QPuQBgAAAA==</sid>
 <sid>AQUAAAAAIAHdKM5P0wxFE7uUMZK5QPuQAAAAAA==</sid>
 </groups>
 <deny_only_sids/>
 <privileges/>
 </token>
 </system>
 </data>
</packet>

The output contains the security IDs (SIDs) of the user and all the groups to which the user
belongs as a member.

Sessions

When you execute the system/login call, a permanent session is created for the user
whose credentials were included in the request. A permanent session is associated with the
physical connection to Agent that your client is using. If you are not planning on logging in
multiple users from the same program, you may simply use this session to execute your
requests. A permanent session never expires, which means that even if your client program
doesn't send any requests to Agent for a long time, the session will still stay active. When you
are done working with Agent, you may simply exit and the session will be terminated
automatically.

52

Using XML API

Logging In To PVA or PPP

Using the Agent API, it is possible to programmatically login to PVA (Parallels Virtual
Automation) or PPP (Parallels Power Panels). This functionality allows accessing PVA or PPP
via a Web browser control embedded in your client application.

The following is a summary describing the steps in performing PVA /PPP login:

1 Create a new Parallels Agent session.

2 Populate the session storage area with the appropriate data according to predefined
rules.

3 Build a PVA /PPP connection URL and pass it to the Web browser.

4 As a result, the main PVA /PPP screen will open in the browser. The user will then be able
to use it to virtual environments in a usual manner.

The rest of this section describes how to perform each of the above steps in detail.

Creating a New Session

This step is performed using the sessionm/login or sessionm/duplicate_session
call. Please don't forget that your client application must first log in to PVA Agent (p. 50)
before it can create additional sessions.

If you are logging in to PVA , you must supply the following parameters:

• name - User name. The user must have permissions to access PVA .

• realm - Realm ID.

• password - User password.

The following sample illustrates how to crate a session that will be used to log in to PVA :
<packet xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="5dc458a2d5ct6de91b18r1762" version="4.0.0" type="2">
 <target>sessionm</target>
 <data>
 <sessionm>
 <login xsi:type="ns1:auth_nameType">
 <ns1:name>cm9vdA==</ns1:name>
 <ns1:realm>00000000-0000-0000-0000-000000000000</ns1:realm>
 <password>bXlwYXNz</password>
 </login>
 </sessionm>
 </data>
</packet>

If you are logging in to PPP, the parameters are as follows:

• domain - This parameter must contain the base-64 encoded EID (Environment ID) of the
desired virtual environment.

53

Using XML API

• name - User name. The user must be an administrator of the specified virtual
environment.

• realm - Realm ID. This must be a Virtual environment Realm (type 1000) (p. 47)
referencing the operating system user registry in the specified virtual environment.

• password - User password.

The following sample illustrates how to create a session that will be used to log in to PPP:
<packet xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="15dac47b1c16bt6174e9d2r5fb4" version="4.0.0" type="2">
 <target>sessionm</target>
 <data>
 <sessionm>
 <login xsi:type="ns1:auth_nameType">
 <ns1:domain>YzljNzYwNWMtOTA4ZS1iMTQ0LTkzMzgtMTBiNzAxYzFlNjdh</ns1:domain>
 <ns1:name>cm9vdA==</ns1:name>
 <ns1:realm>00000000-0000-0000-0100-000000000000</ns1:realm>
 <password>bXlwYXNz</password>
 </login>
 </sessionm>
 </data>
</packet>

Populating The Session With Appropriate Data

This step is performed using the sessionm/put call. The call inserts a key/value pair into
the session storage area on the server side. This data is evaluated by PVA or PPP during the
login operation and is used to determine the user access rights. The following table describes
the available keys.

Key Type Description

auth-type int Authorization type. Possible values are:

 4 - Cluster user to login to PVA .

 7 - Anonymous to login to PVA .

 6 - Login to PVA for password restore only.

11 - Login to PPP as Container administrator.

 3 - Login to PPP with Plesk as Plesk Administrator.

 7 - Login to PPP for password restore only.

12 - Reserved SSO login.

token tokenType A token containing the user security information. The token is obtained
from the return of the sessionm/login call described in the Creating a
New Session step above. For the complete definition of the tokenType
type, see the Parallels Agent XML Reference.

vzcp base64Binary Additional login information. Currently, this parameter must contain
exactly the following base64-encoded XML fragment:

Parallels Virtual
Automation<login>root</login><eid>00000000-0000-0000-
0000-000000000000</eid></vzcp>

54

Using XML API

Note: All of the keys described in the table above are required and must be inserted into the
session storage before attempting to log in to PVA or PPP. The value of the auth-type key must be
selected from the list of the predefined values.

The following sample illustrates how to populate the session storage with the data:
<packet xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 type="2" version="4.0.0">
 <target>sessionm</target>
 <data>
 <sessionm>
 <put>
 <session_id>vzl.40000.4.40ab1a76-12b8-48ce-9cda-
b82098a3334e..4c47b177ddt54cdfb74r2306</session_id>
 <data>
 <key>auth-type</key>
 <value>4</value>
 </data>
 <data>
 <key>token</key>
 <value xsi:type="ns1:tokenType">
 <ns1:user>AQUAAAAAIAF2GqtAuBLOSJzauCCYozNOAAAAAA==</ns1:user>
 <ns1:groups>
 <ns1:sid>AQUAAAAAIAB2GqtAuBLOSJzauCCYozNOAAAAAA==</ns1:sid>
 <ns1:sid>AQUAAAAAIAB2GqtAuBLOSJzauCCYozNOAQAAAA==</ns1:sid>
 <ns1:sid>AQUAAAAAIAB2GqtAuBLOSJzauCCYozNOCgAAAA==</ns1:sid>
 <ns1:sid>AQUAAAAAIAB2GqtAuBLOSJzauCCYozNOAgAAAA==</ns1:sid>
 <ns1:sid>AQUAAAAAIAB2GqtAuBLOSJzauCCYozNOAwAAAA==</ns1:sid>
 <ns1:sid>AQUAAAAAIAB2GqtAuBLOSJzauCCYozNOBAAAAA==</ns1:sid>
 <ns1:sid>AQUAAAAAIAB2GqtAuBLOSJzauCCYozNOBgAAAA==</ns1:sid>
 <ns1:sid>AQUAAAAAIAF2GqtAuBLOSJzauCCYozNOAAAAAA==</ns1:sid>
 </ns1:groups>
 <ns1:deny_only_sids/>
 <ns1:privileges/>
 </value>
 </data>
 <data>
 <key>vzcp</key>

<value>PHZ6Y3A+PGxvZ2luPnJvb3Q8L2xvZ2luPjxlaWQ+MDAwMDAwMDAtMDAwMC0wMDAwLTAwMDAtMD
AwMDAwMDAwMDAwPC9laWQ+PC92emNwPg==</value>
 </data>
 </put>
 </sessionm>
 </data>
</packet>

Building The Connection URL

The format of the PVA /PPP connection URL is as follows:

https://IP_address/vz/cp/login-external?LoginTicket=ticket_id

Where IP_address is the IP address of the host server (PVA) or the virtual environment
(PPP) and ticket_id is the ID of the session that you created in the Creating a New
Session step above. The following is an example of a valid URL:

55

Using XML API

https://10.30.25.145/vz/cp/login-external?LoginTicket=vzl.40000.4.40ab1a76-12b8-
48ce-9cda-b82098a3334e..4c47b177ddt54cdfb74r2306

Container and Virtual Machine Templates
When you create a Container, it should always be based on a Container sample
configuration.

When you create a virtual machine, you can decide whether you want to use a template or
not.

56

Using XML API

Getting Sample Configuration List

Virtuozzo Containers software comes with a number of sample configurations, which are
automatically installed on the host server. To retrieve the list of the available configurations,
send the vzasample_manager/get request to the Slave server where the Container will
reside. Use the the following example:
<packet version="4.0.0" id="4">
 <target>vzasample_manager</target>
 <data>
 <vzasample_manager>
 <get/>
 </vzasample_manager>
 </data>
</packet>

The output will contain all of the available configurations with the complete set of parameters
for each one (the output will be very long). You can review the parameters and their values
but what you really need is the configuration name and ID. The following example shows the
typical output. The QoS (quality of service) and some of the other configuration parameters
are omitted for brevity in our example.
<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns3="http://www.swsoft.com/webservices/vzl/4.0.0/sample_manager"
xmlns:ns2="http://www.swsoft.com/webservices/vza/4.0.0/vzasamplem"
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/protocol"
xmlns:ns5="http://www.swsoft.com/webservices/vza/4.0.0/vzatypes"
xmlns:ns4="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="0" id="1bc4cf39711t491cr4c4" type="0" time="2010-11-29T12:10:47+0000">
<origin>vzasample_manager</origin>
<target>vzclient45-a91bcfea-3de2-ba43-859a-26f58f14706e</target>
<dst>
 <director>gend</director>
</dst>
<data>
 <vzasample_manager>
 <sample xsi:type="ns3:env_sampleType">
 <id>4b95a451-bcbf-c361-efa4-ec2672698d7a</id>
 <virtual_config xsi:type="ns4:env_configType">
 <on_boot>1</on_boot>
 <offline_management>1</offline_management>
 <architecture>x86_64</architecture>
 <address>
 <ip>0.0.0.0</ip>
 </address>
 <qos>
 <id>avnumproc</id>
 <hard>180</hard>
 </qos>
 <qos>
 <id>cpuunits</id>
 <hard>1000</hard>
 </qos>
 <qos>
 <id>dcachesize</id>
 <hard>3624960</hard>
 <soft>3409920</soft>

57

Using XML API

 </qos>
 <qos>
 <id>dgramrcvbuf</id>
 <hard>262144</hard>
 <soft>262144</soft>
 </qos>
 <qos>
 <id>diskinodes</id>
 <hard>220000</hard>
 <soft>200000</soft>
 </qos>
 <qos>
 <id>diskspace</id>
 <hard>1153024</hard>
 <soft>1048576</soft>
 </qos>
 <qos>
 <id>kmemsize</id>
 <hard>14790164</hard>
 <soft>14372700</soft>
 </qos>
 <qos>
 <id>lockedpages</id>
 <hard>512</hard>
 <soft>512</soft>
 </qos>
 <qos>
 <id>numfile</id>
 <hard>9312</hard>
 </qos>
 <qos>
 <id>numflock</id>
 <hard>206</hard>
 <soft>188</soft>
 </qos>
 <qos>
 <id>numiptent</id>
 <hard>128</hard>
 </qos>
 <qos>
 <id>numothersock</id>
 <hard>360</hard>
 </qos>
 <qos>
 <id>numproc</id>
 <hard>240</hard>
 </qos>
 <qos>

After executing this request, select the sample configuration that you would like to use and
extract its ID from the response message. You will use it later as an input parameter in the
request that will create the Container.

58

Using XML API

Getting Virtual Machine Template List

A Parallels virtual machine can be created from scratch or it can be based on a virtual
machine sample configuration. To list the available sample configurations, use the
vzpsample_managerequest:

<packet version="4.0.0" id="4">
 <target>vzpsample_manager</target>
 <data>
 <vzpsample_manager>
 <get/>
 </vzpsample_manager>
 </data>
</packet>

The output will contain the available sample configurations with the complete set of
parameters for each one (the output can be very long). You can review the parameters and
their values but what you really need is the configuration identifier, which is a globally unique
ID contained in the <name> element. The following example shows a typical output.

<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns3="http://www.swsoft.com/webservices/vzl/4.0.0/sample_manager"
xmlns:ns2="http://www.swsoft.com/webservices/vzp/4.0.0/vzpsamplem"
xmlns:ns5="http://www.swsoft.com/webservices/vzp/4.0.0/vzptypes"
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/protocol"
xmlns:ns4="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="0" id="1cc4cf39c2ft4d06r4c4" type="0" time="2010-11-29T12:32:39+0000">
<origin>vzpsample_manager</origin>
<target>vzclient45-a91bcfea-3de2-ba43-859a-26f58f14706e</target>
<dst>
 <director>gend</director>
</dst>
<data>
 <vzpsample_manager>
 <sample xsi:type="ns3:env_sampleType">
 <id>cb242b53-25e4-4843-8c07-3d84296e8748</id>
 <virtual_config xsi:type="ns4:env_configType">
 <name>1d59c6a2-bb4d-e34c-8fcc-2f8d74e12a97</name>
 <description></description>
 <hostname></hostname>
 <architecture>x86_64</architecture>
 <os xsi:type="ns4:osType">
 <platform>Linux</platform>
 <name>Red Hat Enterprise Linux</name>
 </os>
 <type>parallels</type>
 <home_path>/var/parallels/1d59c6a2-bb4d-e34c-8fcc-
2f8d74e12a97.pvm/config.pvs</home_path>
 <memory_size>512</memory_size>
 <video_memory_size>3</video_memory_size>
 <cpu_count>1</cpu_count>
 <cpu_mode>0</cpu_mode>
 <cpu_units>0</cpu_units>
 <cpu_limit>0</cpu_limit>
 <io_priority>4</io_priority>
 <offline_management>0</offline_management>
 <tools_autoupdate_enabled>1</tools_autoupdate_enabled>

59

Using XML API

 <use_default_answers>0</use_default_answers>
 <user_shared_folders_enabled>1</user_shared_folders_enabled>
 <cpu_accel_level>2</cpu_accel_level>
 <auto_start>0</auto_start>
 <auto_start_delay>0</auto_start_delay>
 <start_login_mode>0</start_login_mode>
 <start_user_login></start_user_login>
 <auto_stop>2</auto_stop>
 <window_mode>0</window_mode>
 <last_modified_date>2010-05-17 09:14:55</last_modified_date>
 <last_modifier_name>root@.</last_modifier_name>
 <guest_sharing_enabled>0</guest_sharing_enabled>
 <guest_sharing_auto_mount>1</guest_sharing_auto_mount>
 <host_sharing_enabled>0</host_sharing_enabled>
 <host_sharing_local>0</host_sharing_local>
 <host_sharing_global>0</host_sharing_global>
 <disk_cache_write_back>1</disk_cache_write_back>
 <close_app_on_shutdown>0</close_app_on_shutdown>
 <system_flags></system_flags>
 <foreground_priority>1</foreground_priority>
 <background_priority>1</background_priority>
 <server_host_name></server_host_name>
 <icon></icon>
 <show_task_bar>1</show_task_bar>
 <relocate_task_bar>0</relocate_task_bar>
 <exclude_dock>1</exclude_dock>
 <multi_display>0</multi_display>
 <is_template>1</is_template>

<additional_screen_resolutions_enabled>0</additional_screen_resolutions_enabled>

<os_screen_resolution_in_full_screen_mode_enabled>0</os_screen_resolution_in_full
_screen_mode_enabled>
 <app_in_dock_mode>2</app_in_dock_mode>
 <dock_icon_type>0</dock_icon_type>
 <vnc_mode>0</vnc_mode>
 <vnc_port>5900</vnc_port>
 <vnc_nic>0.0.0.0</vnc_nic>
 <vnc_password></vnc_password>
 <disabled>0</disabled>
 <origin_sample></origin_sample>
 <tools_status>1</tools_status>
 <vnc_started>0</vnc_started>
 <access_for_others>0</access_for_others>
 <device_list>
 <device xsi:type="ns5:vm_floppy_disk_device">
 <connected>0</connected>
 <enabled>1</enabled>
 <emulation_type>1</emulation_type>
 <remote>0</remote>
 <sys_name>/var/parallels/1d59c6a2-bb4d-e34c-8fcc-
2f8d74e12a97.pvm/floppy.fdd</sys_name>
 <friendly_name>/var/parallels/1d59c6a2-bb4d-e34c-8fcc-
2f8d74e12a97.pvm/floppy.fdd</friendly_name>
 <description></description>
 <summary_info>/var/parallels/1d59c6a2-bb4d-e34c-8fcc-
2f8d74e12a97.pvm/floppy.fdd</summary_info>
 <device_index>0</device_index>
 </device>
 <device xsi:type="ns5:vm_hard_disk_device">
 <connected>1</connected>

60

Using XML API

 <enabled>1</enabled>
 <emulation_type>1</emulation_type>
 <remote>0</remote>
 <sys_name>/var/parallels/1d59c6a2-bb4d-e34c-8fcc-
2f8d74e12a97.pvm/1d59c6a2-bb4d-e34c-8fcc-2f8d74e12a97.hdd</sys_name>
 <friendly_name>/var/parallels/1d59c6a2-bb4d-e34c-8fcc-
2f8d74e12a97.pvm/1d59c6a2-bb4d-e34c-8fcc-2f8d74e12a97.hdd</friendly_name>
 <description></description>
 <summary_info>20.0 GB</summary_info>
 <is_bootable/>
 <is_boot_in_use/>
 <boot_sequence_index>0</boot_sequence_index>
 <device_index>0</device_index>
 <interface_type>0</interface_type>
 <stack_index>0</stack_index>
 <passthrough>0</passthrough>
 <disk_type>1</disk_type>
 <splitted>0</splitted>
 <size>20480</size>
 <size_on_disk>3023</size_on_disk>
 <valid>1</valid>
 </device>
 <device xsi:type="ns5:vm_network_device">
 <connected>1</connected>
 <enabled>1</enabled>
 <emulation_type>2</emulation_type>
 <remote>0</remote>
 <sys_name></sys_name>
 <friendly_name></friendly_name>
 <description></description>
 <summary_info>Bridged Ethernet</summary_info>
 <device_index>0</device_index>
 <bound_adapter_name>Default Adapter</bound_adapter_name>
 <bound_adapter_index>-1</bound_adapter_index>
 <default_gateway></default_gateway>
 <virtual_network_id></virtual_network_id>
 <mac_address>00:1C:42:60:56:67</mac_address>
 </device>
 </device_list>
 </virtual_config>
 </sample>
 </vzpsample_manager>
</data>
<src>
 <director>gend</director>
</src>
</packet>

After executing this request, select the sample configuration that you would like to use and
extract its name (GUID) from the response message. You will use it later as an input
parameter in the request that will create the virtual machine.

61

Using XML API

Getting Resource Library Template List

The templates that are stored in the Resource Library are available for usage on any of the
registered Slave nodes within the PVA infrastructure.

To get the list of Container and virtual machine Library templates, send the
sample_manager/get request to the PVA Management Node. Use the following example:

<packet version="4.0.0" id="4">
 <target>sample_manager</target>
 <data>
 <sample_manager>
 <get/>
 </sample_manager>
 </data>
</packet>

The output will contain all of the available templates (the output can be very long). The
following example shows the typical output.
<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns2="http://www.swsoft.com/webservices/vzl/4.0.0/sample_manager"
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/protocol"
xmlns:ns4="http://www.swsoft.com/webservices/vza/4.0.0/vzatypes"
xmlns:ns3="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="0" id="1fc4cf39cddt54der4c4" type="0" time="2010-11-29T00:29:48+0000">
<origin>sample_manager</origin>
<target>vzclient25-89bc4bb1-6e87-6271-fd2e-a332696dae7a</target>
<dst>
 <director>gend</director>
</dst>
<data>
 <sample_manager>
 <sample xsi:type="ns2:env_sampleType">
 <id>4e5cdb8a-f360-49f1-9bd0-de98cab25e75</id>
 <virtual_config xsi:type="ns3:env_configType">
 <on_boot>0</on_boot>
 <offline_management>0</offline_management>
 <os_template>
 <version></version>
 <name></name>
 </os_template>
 <slm_mode>slm</slm_mode>
 <qos>
 <id>avnumproc</id>
 <hard>180</hard>
 </qos>
 <qos>
 <id>burst_cpu_avg_usage</id>
 <hard>100</hard>
 </qos>
 <qos>
 <id>burst_cpulimit</id>
 <hard>100</hard>
 </qos>
 <qos>
 <id>cpulimit</id>

62

Using XML API

 <hard>100</hard>
 </qos>
 <qos>
 <id>cpus</id>
 <hard>0</hard>
 </qos>
 <qos>
 <id>cpuunits</id>
 <hard>1000</hard>
 </qos>
 <qos>
 <id>dcachesize</id>
 <hard>3624960</hard>
 <soft>3409920</soft>
 </qos>
 <qos>
 <id>dgramrcvbuf</id>
 <hard>262144</hard>
 <soft>262144</soft>
 </qos>
 <qos>
 <id>diskinodes</id>
 <hard>220000</hard>
 <soft>200000</soft>
 </qos>
 <qos>
 <id>diskspace</id>
 <hard>1153024</hard>
 <soft>1048576</soft>
 </qos>
 <qos>
 <id>ioprio</id>
 <hard>4</hard>
 </qos>
 <qos>
 <id>kmemsize</id>
 <hard>14790164</hard>
 <soft>14372700</soft>
 </qos>
 <qos>
 <id>lockedpages</id>
 <hard>256</hard>
 <soft>256</soft>
 </qos>
 <qos>
 <id>numfile</id>
 <hard>9312</hard>
 </qos>
 <qos>
 <id>numflock</id>
 <hard>206</hard>
 <soft>188</soft>
 </qos>
 <qos>
 <id>numiptent</id>
 <hard>128</hard>
 </qos>
 <qos>
 <id>numothersock</id>
 <hard>360</hard>
 </qos>

63

Using XML API

 <qos>
 <id>vmguarpages</id>
 <hard>9223372036854775807</hard>
 <soft>33792</soft>
 </qos>
 <type>virtuozzo</type>
 <os xsi:type="ns3:osType">
 <platform>Linux</platform>
 <name></name>
 </os>
 <architecture>i386</architecture>
 <name>zxc</name>
 <base_sample_id>4e5cdb8a-f360-49f1-9bd0-de98cab25e75</base_sample_id>
 </virtual_config>
 </sample>
 </sample_manager>
</data>
<src>
 <director>gend</director>
</src>
</packet>

Creating and Configuring Virtuozzo Containers
This section describes how to create a Virtuozzo Container using Agent XML API.

64

Using XML API

Getting a List of OS Templates

A Virtuozzo Container is based on an Operating System template (OS template). When
creating a Container, you must choose and specify the OS template name. The OS templates
are shipped with Virtuozzo Containers software and are installed on the host server. To get
the list of the available OS templates, use the vzapackagem/list call as shown in the
following example:
<packet version="4.0.0" id="32">
 <target>vzapackagem</target>
 <data>
 <vzapackagem>
 <list>
 <options>
 <type>os</type>
 </options>
 </list>
 </vzapackagem>
 </data>
</packet>

The output will contain the list of the available OS templates:
<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns3="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/packagem"
xmlns:ns2="http://www.swsoft.com/webservices/vza/4.0.0/vzatypes"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="0" id="6c486384eat2cd6r1be8" time="2008-06-26T15:49:01+0000">
<origin>vzapackagem</origin>
<target>vzclient2-67cefb4a-9a6e-2d41-94aa-cbfd20fa3943</target>
<dst>
 <director>gend</director>
</dst>
<data>
 <vzapackagem>
 <packages>
 <package xsi:type="ns2:package_vztemplateType">
 <name>.fedora-core-6-x86</name>
 <os xsi:type="ns3:osType">
 <platform>Linux</platform>
 <name></name>
 </os>
 <arch>x86</arch>
 <os_template>1</os_template>
 <cached>1</cached>
 <uptodate>0</uptodate>
 </package>
 <package xsi:type="ns2:package_vztemplateType">
 <name>.redhat-el5-x86</name>
 <os xsi:type="ns3:osType">
 <platform>Linux</platform>
 <name></name>
 </os>
 <arch>x86</arch>
 <os_template>1</os_template>
 <cached>1</cached>
 <uptodate>0</uptodate>
 </package>

65

Using XML API

 <package xsi:type="ns2:package_std_vztemplateType">
 <name>redhat-as3-minimal</name>
 <version>20061020</version>
 <os xsi:type="ns3:osType">
 <platform>Linux</platform>
 <name></name>
 </os>
 <arch>x86</arch>
 <os_template>1</os_template>
 <cached>1</cached>
 <uptodate>0</uptodate>
 <technology>nptl</technology>
 <technology>x86</technology>
 <base>1</base>
 </package>
 </packages>
 </vzapackagem>
</data>
<src>
 <director>gend</director>
</src>
</packet>

Choose the OS template from the list and get its name. The template name will be used as a
parameter in the call that will create the Container later. In our example, we have just one
template and its name is "redhat-as3-minimal" (the standard Virtuozzo Containers Red Hat
Linux template).

66

Using XML API

Populating Container Configuration Structure

After you've selected the configuration sample and the OS template, you have to populate
the Container configuration structure with these and other values. The most commonly used
and important parameters are described in the following table:

Parameter Description

base_sample_id The sample configuration ID.

os_template/name The OS template name.

name The Container computer name.

hostname The Container hostname.

veid Virtuozzo-level Container ID. This can be any integer number
greater than 100.

on_boot Start the Container automatically on host system boot.

offline_management Enable the "offline-management" feature for the Container.

ip_address The Container IP address. In the example that will follow, we
will assign the IP address to the default venet0 virtual network
adapter.

The venet0 adapter is created automatically for every
Container. We could also create our own virtual network
adapter inside a Container and customize it according to our
needs. For more info on how to create and configure virtual
ethernet adapters, see the venv_configType and
net_vethType type specifications in the Parallels Agent
XML API Reference guide.

The rest of the configuration parameters (such as disk quota, CPU parameters, etc.) can also
be customized but it should only be done by the experienced users. In this example, we will
set all of the parameters from the table above. We will not modify any of the advanced
parameters so their values will be taken from the sample configuration file. The configuration
portion of the XML request that will create our Container will look like this:
<config>
 <name>My-CT10</name>
 <hostname>Host-110</hostname>
 <base_sample_id>c607f3c6-16b3-214a-9079-8113fdfa1630</base_sample_id>
 <veid>110</veid>
 <on_boot>true</on_boot>
 <offline_management>true</offline_management>
 <os_template>
 <name>redhat-as3-minimal</name>
 </os_template>
 <net_device>
 <id>venet0</id>
 <ip_address>
 <ip>10.17.3.121</ip>
 </ip_address>
 <host_routed/>
 </net_device>
</config>

67

Using XML API

You can use your own name, hostname, veid, and IP address of course.

68

Using XML API

Creating a Virtuozzo Container

The final step in creating a Container is to build the XML request and send it to Agent. To
create a Container, use the vzaenvm/create call.

The following request will create a Virtuozzo Container:
<packet version="4.0.0" id="2">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <create>
 <config>
 <name>My-CT10</name>
 <hostname>Host-110</hostname>
 <base_sample_id>c607f3c6-16b3-214a-9079-8113fdfa1630</base_sample_id>
 <veid>110</veid>
 <on_boot>true</on_boot>
 <offline_management>true</offline_management>
 <os_template>
 <name>redhat-as3-minimal</name>
 </os_template>
 <net_device>
 <id>venet0</id>
 <ip_address>
 <ip>10.17.3.121</ip>
 </ip_address>
 <host_routed/>
 </net_device>
 </config>
 </create>
 </vzaenvm>
 </data>
</packet>

If the Container is created successfully, you should see the output similar to the following:
<packet id="2" time="2007-09-10T11:02:33+0000" priority="4000" version="4.0.0">
 <origin>vzaenvm</origin>
 <target>vzclient139-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
 <dst>
 <director>gend</director>
 </dst>
 <data>
 <vzaenvm>
 <env>
 <parent_eid>00000000-0000-0000-0000-000000000000</parent_eid>
 <eid>8d5c125b-e7f5-c448-9c8a-ee7ccab18599</eid>
 <status>
 <state>1</state>
 </status>
 <alert>0</alert>
 <config/>
 <virtual_config>
 <veid>110</veid>
 <type>virtuozzo</type>
 </virtual_config>
 </env>
 </vzaenvm>

69

Using XML API

 </data>
</packet>

The output contains the EID that was assigned to the new Container by Agent, the ID of the
host server, and some of the Container information. If you see an output like that, it means
that the Container was created successfully.

70

Using XML API

Retrieving Container Configuration

You can retrieve the Container configuration information by executing the simple
vzaenvm/get_info request as follows:

<packet version="4.0.0" id="2">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <get_info>
 <eid>a5961178-14d2-40cc-b1e7-41b562a2f4c6</eid>
 <config/>
 </get_info>
 </vzaenvm>
 </data>
</packet>

The eid parameters specifies the EID of the Container. The output will contain the complete
Container information including host server EID, the status information (running, stopped,
etc.), the alert information if any alerts are currently raised on the Container, and the
Container configuration data. The following example is an output with most of the QoS
parameters omitted for brevity:
<packet priority="0" version="4.0.0">
 <origin>vzaenvm</origin>
 <data>
 <vzaenvm>
 <env xsi:type="envType">
 <parent_eid>89e27960-97b8-461f-902f-557b4b16784b</parent_eid>
 <eid>3e25fee2-1163-4336-9e74-8b8097936d47</eid>
 <status xsi:type="ns3:env_statusType">
 <state>6</state>
 </status>
 <alert>0</alert>
 <config xsi:type="env_configType"/>
 <virtual_config xsi:type="venv_configType">
 <hostname>myhost</hostname>
 <name>Mycomputer</name>
 <offline_management>1</offline_management>
 <on_boot>1</on_boot>
 <os_template>
 <version>20061020</version>
 <name>redhat-as3-minimal</name>
 </os_template>
 <ve_root>/vz/root/$VEID</ve_root>
 <ve_private>/vz/private/$VEID</ve_private>
 <ve_type>
 <veid>0</veid>
 <type>1</type>
 </ve_type>
 <qos>
 <id>avnumproc</id>
 <hard>40</hard>
 </qos>
 <qos>
 <id>cpuunits</id>
 <hard>1000</hard>
 </qos>

71

Using XML API

 <qos>
 <id>dcachesize</id>
 <hard>1097728</hard>
 <soft>1048576</soft>
 </qos>

 <!-- ->

 <veid>101</veid>
 <type>virtuozzo</type>
 <offline_service>vzpp</offline_service>
 <offline_service>vzpp-plesk</offline_service>
 <os xsi:type="ns3:osType">
 <platform>Linux</platform>
 <kernel>2.6.9-023stab033.6</kernel>
 <version>20061020</version>
 <name>redhat-as3-minimal</name>
 </os>
 <net_device xsi:type="ns4:net_vethType">
 <id>venet0</id>
 <ip_address>
 <ip>10.100.23.203</ip>
 </ip_address>
 <ns4:host_routed/>
 </net_device>
 <address>
 <ip>10.100.23.203</ip>
 </address>
 </virtual_config>
 </env>
 </vzaenvm>
 </data>
</packet>

Configuring a Virtuozzo Container

To modify the configuration parameters of an existing Virtuozzo Container, use the
vzanevm/set request. There are two ways that a container configuration can be modified:

• By specifying the configuration parameters and their new values

• By applying the values from a sample configuration.

The following subsections describe each method in detail.

72

Using XML API

Passing parameters explicitly

The configuration parameters can be passed explicitly by specifying the parameters and the
new values in the request. By using this approach, you can modify a single parameter, a set
of parameters, or the entire configuration information. The request is similar to the create
request that creates a Container. It accepts the EID of the Container that you would like to
update, the configuration structure (venv_configType), and a couple of other parameters.
To execute a request, first populate the configuration structure with the parameters and
values that you would like to modify (all of the parameters are optional so you can include or
exclude any of them) and then pass it to Agent using the vzanevm/set request.

The following sample assigns a new hostname and adds a search domain to an existing
Virtuozzo Container. It is also adding two DNS servers to the default venet0 virtual network
adapter.
<packet version="4.0.0" id="34">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <set>
 <eid>3288bb6b-8a49-4230-b565-6ad5521182aa</eid>
 <config>
 <hostname>myhost</hostname>
 <search_domain>ts6.com</search_domain>
 <net_device>
 <id>venet0</id>
 <nameserver>192.168.1.51</nameserver>
 <nameserver>192.168.1.52</nameserver>
 </net_device>
 </config>
 </set>
 </vzaenvm>
 </data>
</packet>

The following example will modify the IP address configuration for the venet0 network
adapter, which is the default virtual adapter inside a Container. This modification works in
such a way that the existing IP addresses are first removed from the adapter configuration
and then the passed addresses are added replacing the old ones. To add an IP address
without removing the old ones, first retrieve the existing addresses, then add the new
address (or addresses) to the list, and then include the entire list in the request.
<packet version="4.0.0">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <set>
 <eid>72145bf0-7562-43d4-b707-cc33d37e3f10</eid>
 <config>
 <net_device>
 <id>venet0</id>
 <ip_address>
 <ip>10.130.1.1</ip>
 </ip_address>
 <ip_address>
 <ip>10.130.1.2</ip>

73

Using XML API

 </ip_address>
 <ip_address>
 <ip>10.130.1.3</ip>
 </ip_address>
 <host_routed/>
 </net_device>
 </config>
 </set>
 </vzaenvm>
 </data>
</packet>

Using values from a sample configuration

This approach allows to specify the name of the configuration parameters but their values will
be taken from a sample configuration. This is useful when setting (or re-setting) the QoS-
related values because a sample configuration contains the values that are fine-tuned for the
type of applications that you intend to run inside the Container. Although you can modify
individual parameters, it often makes sense to modify an entire parameter category. This is
accomplished by specifying the category ID using the category element. The following
table lists the categories that can be set using this approach.

Category ID Description

general_conf General Container parameters.

qos Resource parameters - UBC, disk quota, CPU - all at once.

quota Disk quota parameters.

cpu CPU parameters.

The following sample shows how to modify an entire set of QoS parameters in a Container
using the values from the specified sample configuration.
<packet version="4.0.0" id="654">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <set>
 <eid>6dbd99dc-f212-45de-a5f4-ddb78a2b5280</eid>
 <apply_config>
 <sample_conf>f8e96630-7fd8-4eee-93b2-3ad7b6b53916</sample_conf>
 <category>qos</category>
 </apply_config>
 </set>
 </vzaenvm>
 </data>
</packet>

74

Using XML API

Destroying a Virtuozzo Container

When you destroy a Container, all its data is removed from the host server and cannot be
recovered. You can only destroy a Container that is currently stopped. To destroy a
Container, execute the following request (the eid element contains the EID of the Container
to be destroyed):
<packet version="4.0.0" id="2">
 <target>vzaenvm</target>
 <data>
 <vzaenvm>
 <destroy>
 <eid>a5961178-14d2-40cc-b1e7-41b562a2f4c6</eid>
 </destroy>
 </vzaenvm>
 </data>
</packet>

Creating and Managing Parallels Virtual
Machines
This section describes how to create and perform basic operations on a Parallels virtual
machine using the Agent XML API.

75

Using XML API

Creating a Virtual Machine

To create a virtual machine, use the vzpenvm/create call.

For the create call to be executed, at least a virtual machine name has to be passed to it. If
you supply just the name for the new virtual machine, it will be created using the default
configuration.

The following request will create a virtual machine named MyVM with default configuration.
<packet version="4.0.0" id="2">
 <target>vzpenvm</target>
 <data>
 <vzpenvm>
 <create>
 <config>
 <name>MyVM</name>
 </config>
 </create>
 </vzpenvm>
 </data>
</packet>

If the virtual machine is created successfully, you should see the output similar to the
following:
<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns3="http://www.swsoft.com/webservices/vzp/4.0.0/vzptypes"
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/protocol"
xmlns:ns2="http://www.swsoft.com/webservices/vzp/4.0.0/vzpenvm"
xmlns:ns4="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="4000" id="ac499188e9t4ae1rc14" time="2009-02-10T14:02:29+0000">
<ns1:origin>vzpenvm</ns1:origin>
<ns1:target>vzclient17-bd64bb39-84f1-6944-b2e5-1c4e7371d2ab</ns1:target>
<ns1:dst>
 <director>gend</director>
</ns1:dst>
<ns1:data>
 <ns2:vzpenvm>
 <ns2:env xsi:type="ns3:env">
 <ns4:parent_eid>bd64bb39-84f1-6944-b2e5-1c4e7371d2ab</ns4:parent_eid>
 <ns4:eid>5d0162f4-8268-48ff-a0ef-e117b4fd7db8</ns4:eid>
 <ns4:status xsi:type="ns4:env_statusType">
 <ns4:state>3</ns4:state>
 </ns4:status>
 <ns4:alert>0</ns4:alert>
 <ns4:config xsi:type="ns4:env_configType"/>
 <ns4:virtual_config xsi:type="ns3:venv_config">
 <ns4:type>parallels</ns4:type>
 <ns4:name>MyVM</ns4:name>
 <ns4:description></ns4:description>
 <ns4:memory_size>256</ns4:memory_size>
 <ns4:video_memory_size>16</ns4:video_memory_size>
 <ns4:cpu_count>1</ns4:cpu_count>
 <ns4:cpu_mode>0</ns4:cpu_mode>
 <ns4:cpu_units>0</ns4:cpu_units>
 <ns4:cpu_accel_level>2</ns4:cpu_accel_level>

76

Using XML API

 <ns4:auto_start>0</ns4:auto_start>
 <ns4:auto_start_delay>0</ns4:auto_start_delay>
 <ns4:start_login_mode>0</ns4:start_login_mode>
 <ns4:start_user_login></ns4:start_user_login>
 <ns4:auto_stop>1</ns4:auto_stop>
 <ns4:window_mode>0</ns4:window_mode>
 <ns4:last_modified_date>2009-02-10
09:02:18</ns4:last_modified_date>
 <ns4:last_modifier_name>root@.</ns4:last_modifier_name>
 <ns4:guest_sharing_enabled>1</ns4:guest_sharing_enabled>
 <ns4:guest_sharing_auto_mount>1</ns4:guest_sharing_auto_mount>
 <ns4:host_sharing_enabled>1</ns4:host_sharing_enabled>
 <ns4:host_sharing_local>0</ns4:host_sharing_local>
 <ns4:host_sharing_global>0</ns4:host_sharing_global>
 <ns4:disk_cache_write_back>1</ns4:disk_cache_write_back>
 <ns4:close_app_on_shutdown>0</ns4:close_app_on_shutdown>
 <ns4:system_flags></ns4:system_flags>
 <ns4:foreground_priority>1</ns4:foreground_priority>
 <ns4:background_priority>1</ns4:background_priority>
 <ns4:server_host_name></ns4:server_host_name>
 <ns4:home_path>/var/parallels/MyVM.pvm/config.pvs</ns4:home_path>
 <ns4:hostname></ns4:hostname>
 <ns4:icon></ns4:icon>
 <ns4:show_task_bar>1</ns4:show_task_bar>
 <ns4:relocate_task_bar>1</ns4:relocate_task_bar>
 <ns4:exclude_dock>1</ns4:exclude_dock>
 <ns4:multi_display>1</ns4:multi_display>

<ns4:additional_screen_resolutions_enabled>0</ns4:additional_screen_resolutions_e
nabled>

<ns4:os_screen_resolution_in_full_screen_mode_enabled>0</ns4:os_screen_resolution
_in_full_screen_mode_enabled>
 <ns4:app_in_dock_mode>2</ns4:app_in_dock_mode>
 <ns4:dock_icon_type>0</ns4:dock_icon_type>
 <ns4:vnc_mode>1</ns4:vnc_mode>
 <ns4:vnc_port>5900</ns4:vnc_port>
 <ns4:vnc_nic>10.27.0.248</ns4:vnc_nic>
 <ns4:vnc_password></ns4:vnc_password>
 <ns4:disabled>0</ns4:disabled>
 <ns4:origin_sample></ns4:origin_sample>
 <ns4:tools_status>1</ns4:tools_status>
 <ns4:access_for_others>0</ns4:access_for_others>
 <ns4:is_template>0</ns4:is_template>
 <ns4:qos>
 <ns4:id>counter_disk_space_used_alert</ns4:id>
 <ns4:hard>99</ns4:hard>
 <ns4:soft>99</ns4:soft>
 </ns4:qos>
 <ns4:qos>
 <ns4:id>counter_memory_mem_used_alert</ns4:id>
 <ns4:hard>99</ns4:hard>
 <ns4:soft>99</ns4:soft>
 </ns4:qos>
 <ns4:os xsi:type="ns4:osType">
 <ns4:platform>Other</ns4:platform>
 <ns4:name>Other</ns4:name>
 </ns4:os>
 <ns4:architecture>i386</ns4:architecture>
 </ns4:virtual_config>
 </ns2:env>

77

Using XML API

 </ns2:vzpenvm>
</ns1:data>
<src>
 <director>gend</director>
</src>
</packet>

The output contains the EID that was assigned to the new virtual machine by Agent, the EID
of the host server, and the virtual machine configuration information.

Retrieving Virtual Machine Information

To obtain the virtual machine configuration information, use the vzpenvm/get_info
request:
<packet version="4.0.0" id="2">
 <target>vzpenvm</target>
 <data>
 <vzpenvm>
 <get_info>
 <eid>a5961178-14d2-40cc-b1e7-41b562a2f4c6</eid>
 <config/>
 </get_info>
 </vzpenvm>
 </data>
</packet>

The eid parameters specifies the virtual machine EID. The output will contain the complete
virtual machine information including the host server EID, the status information (running,
stopped, etc.), the alert information if any alerts are currently raised on the virtual machine,
and the virtual machine configuration info.

Destroying Virtual Machine

When you destroy a virtual machine, all its data is removed from the host server and cannot
be recovered. You can only destroy a virtual machine that is currently stopped. To destroy a
virtual machine, execute the following request (the eid element contains the EID of the virtual
machine to be destroyed):
<packet version="4.0.0" id="2">
 <target>vzpenvm</target>
 <data>
 <vzpenvm>
 <destroy>
 <eid>a5961178-14d2-40cc-b1e7-41b562a2f4c6</eid>
 </destroy>
 </vzpenvm>
 </data>
</packet>

78

Using XML API

Performance Monitor
Performance Monitor is an operator that allows to monitor the performance of the host server
and virtual environments. By monitoring the utilization of the system resources, you can
acquire an important information about your Virtuozzo system health. Performance Monitor
can track a range of processes in real time and provide you with the results that can be used
to identify current and potential problems. It can assist you with the tracking of the processes
that need to be optimized, monitoring the results of the configuration changes, identifying the
resource usage bottlenecks, and planning of upgrades.

The performance data is collected by Periodic Collectors, the special operators that run on
the server side at all times. Periodic collectors collect the data at the predefined time intervals
(several seconds) and put it into a storage buffer where it can be read by other operators.
Performance Monitor is capable of obtaining this data in real time and sending it back to the
client on demand or periodically. The rest of this section describes how to use Performance
Monitor in your client programs.

Classes, Instances, Counters

First, we have to discuss the Performance Monitor terminology.

Performance Class

Performance class is a type of the system resource that can be monitored. This includes
CPU, memory, disk, network, etc. A class is identified by ID. See Appendix A: Performance
Counters (p. 161) for the complete list of classes. Please note that there are two separate
groups of classes: one is used for monitoring Virtuozzo Containers and the other for
monitoring host servers.

Class Instance

While class identifies the type of the system resource, the term "instance" refers to a
particular device when multiple devices of the same type exist in the system. For example,
network in general is a class, but each network card installed in the system is an instance of
that class. Each class has at least one instance, but not all classes may have multiple
instances. Appendix A: Performance Counters (p. 161) provides information on how to
obtain a list of instances for each class.

Performance Counter

Counters are used to measure various aspects of a performance, such as the CPU times,
network rates, disk usage, etc. Each class has its own set of counters. Counter data is
comprised of the current, minimum, maximum, and average values. For the complete list of
counters see Appendix A: Performance Counters (p. 161).

79

Using XML API

Getting a Performance Report

Now that we know what classes, instances, and counters are, we are ready to use
Performance Monitor. In this section, we will obtain a single on-demand performance report.
In the section that follows, we will use the monitor to receive periodic reports.

The first step is to select the performance class for which to obtain a report. Let's say that we
want to get the current network usage by a Virtuozzo Container. The name of the class is
counters_vz_net. The names of the counters are counter_net_incoming_bytes
and counter_net_outgoing_bytes. A single performance report is obtained using the
perf_mon/get call. The XML request will look similar to the following:

<packet version="4.0.0" id="2">
 <target>perf_mon</target>
 <data>
 <perf_mon>
 <get>
 <eid_list>
 <eid>6d7d3a7c-b7a7-3745-b7cb-0e56205120a1</eid>
 </eid_list>
 <class>
 <name>counters_vz_net</name>
 <instance>
 <counter>counter_net_incoming_bytes</counter>
 <counter>counter_net_outgoing_bytes</counter>
 </instance>
 </class>
 </get>
 </perf_mon>
 </data>
</packet>

Output

The output contains the requested performance data.
<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns2="http://www.swsoft.com/webservices/vzl/4.0.0/types"
xmlns:ns1="http://www.swsoft.com/webservices/vzl/4.0.0/perf_mon"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.0.0"
priority="0" id="5c47838ee6t3d6cre0" time="2008-01-08T14:55:36+0000">
<origin>perf_mon</origin>
<target>vzclient19-c56d51ed-cb1c-fa4c-b131-3115d3700c68</target>
<dst>
 <director>gend</director>
</dst>
<data>
 <perf_mon>
 <data xsi:type="ns2:perf_dataType">
 <eid>6d7d3a7c-b7a7-3745-b7cb-0e56205120a1</eid>
 <interval xsi:type="ns2:intervalType">
 <start_time>2008-01-08T14:55:06+0000</start_time>
 <end_time>2008-01-08T14:55:26+0000</end_time>
 </interval>
 <class>
 <name>counters_vz_net</name>
 <instance>

80

Using XML API

 <name>0</name>
 <counter>
 <name>counter_net_incoming_bytes</name>
 <value>
 <avg>0</avg>
 <min>0</min>
 <max>0</max>
 <cur>0</cur>
 </value>
 </counter>
 <counter>
 <name>counter_net_outgoing_bytes</name>
 <value>
 <avg>0</avg>
 <min>0</min>
 <max>0</max>
 <cur>0</cur>
 </value>
 </counter>
 </instance>
 <instance>
 <name>1</name>
 <counter>
 <name>counter_net_incoming_bytes</name>
 <value>
 <avg>0</avg>
 <min>0</min>
 <max>0</max>
 <cur>0</cur>
 </value>
 </counter>
 <counter>
 <name>counter_net_outgoing_bytes</name>
 <value>
 <avg>0</avg>
 <min>0</min>
 <max>0</max>
 <cur>0</cur>
 </value>
 </counter>
 </instance>
 </class>
 </data>
 </perf_mon>
</data>
<src>
 <director>gend</director>
</src>
</packet>

81

Using XML API

Receiving Periodic Reports

In this section, we will use Performance Monitor to receive reports on a periodic basis. This
functionality is provided by the perf_mon/start_monitor call. The following sample
shows how to start the monitoring of the CPU consumption by the specified server:
<packet version="4.0.0" id="2">
 <target>perf_mon</target>
 <data>
 <perf_mon>
 <start_monitor>
 <eid_list>
 <eid>39f40723-b3f5-8c41-8de9-7beefd5021fe</eid>
 </eid_list>
 <class>
 <name>counters_vz_cpu</name>
 <instance>
 <counter>counter_cpu_system</counter>
 </instance>
 </class>
 <report_period>20</report_period>
 </start_monitor>
 </perf_mon>
 </data>
</packet>

The call above starts the monitor with the 20 second intervals, which means that the client
will be receiving a report every 20 seconds. The eid parameter contains the EID of the
Virtuozzo Container to monitor. We are using just one counter from the counters_vz_cpu
class in this example. To obtain the performance data for all counters from this class, simply
remove the instance element together with the counter element. You can also add other
classes and their counters and even monitor multiple servers at the same time (more on that
later).

The first response that we receive from Agent contains the monitor ID. We will need this ID to
stop the monitor later.
<packet id="2" version="4.0.0">
<origin>perf_mon</origin>
 <data>
 <perf_mon>
 <id>491d81b1-1cae-43ec-8b7c-41d873d15991</id>
 </perf_mon>
 </data>
</packet>

After that, the collector starts sending us the reports. The following is an example of one of
the reports:
<packet id="2" priority="0" version="4.0.0">
 <origin>perf_mon</origin>
 <data>
 <perf_mon>
 <data>
 <eid>4d4dcb0c-9c1e-4f7c-af81-e33db3289f61</eid>
 <class>counters_cpu</class>
 <interval>

82

Using XML API

 <start_time>2006-06-20T05:01:09+0000</start_time>
 <end_time>2006-06-20T05:01:30+0000</end_time>
 </interval>
 <instance>
 <name></name>
 <counter>
 <name>counter_cpu_system</name>
 <value>
 <avg>477</avg>
 <min>477</min>
 <max>477</max>
 <cur>2504250</cur>
 </value>
 </counter>
 </instance>
 </data>
 </perf_mon>
 </data>
</packet>

As you can see, the report contains the current, average, minimum, and maximum values.
Since this is an incremental counter (see Appendix A: Performance Counters (p. 161)), the
current value represents the total system CPU time (the time spent by the processor to
execute the operating system tasks), and the average, minimum, and maximum values all
contain the difference (the increase) between the current value and the value from the last
report.

While receiving the performance reports, you may execute other Agent calls if needed. To
correlate the request and response messages, use the ID attribute. All responses that belong
to a particular request will have the same message ID as the message ID of the request.

To stop the monitor, send the following message, passing the monitor ID:
<packet version="4.0.0" id="2">
 <target>perf_mon</target>
 <data>
 <perf_mon>
 <stop_monitor>
 <id>491d81b1-1cae-43ec-8b7c-41d873d15991</id>
 </stop_monitor>
 </perf_mon>
 </data>
</packet>

83

Using XML API

Monitoring Multiple Environments

Performance Monitor allows you to monitor multiple servers at the same time. For example,
you can monitor a host server and its Virtuozzo Containers simultaneously. One important
requirement here is that the performance classes and the counters that you will select for
each server type must be compatible with all of them. This means that if you select a class
from the "generic" category, it must also exist in the "virtuozzo" category. If you mix classes
and counters that exist in one category but don't exist in the other, you will get unpredictable
results. One way around this is to include only the names of the classes and omit the names
of the counters. This way, the names of the counters will be retrieved automatically by
Performance Monitor, so the reports will contain the "correct" counters for each server type,
i.e the report will show different counters for different server types.

There's one more parameter that the start_monitor call takes: filter. You can use this
parameter when you want to monitor all available servers of a particular type but exclude all
other servers. In order to do that, do not specify EIDs but specify the server types to exclude
from monitoring. For example, if you want to monitor only the Virtuozzo Containers but you
want to exclude the host, supply the empty eid element and include the filter element
containing the value "generic". If you include the empty eid element and don't specify a filter,
then all available servers of all types will be monitored.

84

Using XML API

Events and Alerts
Event reporters are operators that monitor the system for critical system events, such as a
server status change or server configuration change. They also allow to subscribe to and
receive automatic notifications if an alert is raised on a server due to resource allocation
problems. These operators are subscription-based, meaning that the client must subscribe to
the event notification services in order to receive notifications. The following types of
subscriptions are currently available:

Subscription Name Description

env_status_subscription Triggers when the status of a server changes, including
state and transition changes. The event reports the status
change for every server that Agent is aware of.

env_config_subscription Triggers when the configuration of a server changes.

alerts_subscription Reports resource allocation problems such as approaching
or breaking certain limits.

To subscribe to an event notification, make the following call:
<packet version="4.0.0" id="2">
 <data>
 <system>
 <subscribe>
 <name>subscription_name</name>
 </subscribe>
 </system>
 </data>
</packet>

Where subscription_name is the name of one of the event subscriptions from the table
above. As soon as the event takes place (or an alert is raised), a message will be sent to your
client program containing the event data. You recognize the event notification message by
examining the value of the target element in the message header, which should contain the
name of the subscription, i.e. the same name that you passed to the call when you
subscribed to the event. Please remember that any message may have more than one
target element; when searching for a particular target, make sure to look through all of
them.

The following examples illustrates a notification message received when one of the servers
was manually stopped. The message contains the ID of the server that generated the event,
the text message that may be presented to the user, and the event data (old/new state and
transition codes). Note that one of the target elements contains the same value as the one
we used in the name element in the request, which is env_status_subscription.
Please also note that the inner data structure contains the elements specific to this event
type -- in this particular case, the env_status_event element.

Input

Subscribing to the status change events.

85

Using XML API

<packet version="4.0.0" id="2">
 <data>
 <system>
 <subscribe>
 <name>env_status_subscription</name>
 </subscribe>
 </system>
 </data>
</packet>

Output

A notification that was received after a server was shut down.
<packet version="4.0.0">
 <target>events_subscription</target>
 <target>env_status_subscription</target>
 <data>
 <event>
 <eid>849c9be9-5fbb-4e7d-b100-f841f86c150e</eid>
 <time>1155317636</time>
 <source></source>
 <category>env_status_subscription</category>
 <sid>XXX</sid>
 <data>
 <env_status_event>
 <eid>62ec514e-bc38-4aee-830d-cc802ee2aadd</eid>
 <new>
 <state>3</state>
 </new>
 <old>
 <state>3</state>
 <transition>5</transition>
 </old>
 </env_status_event>
 </data>
 <info>
 <message>

RW52aXJvbm1lbnQgJWVpZCUgc3RhdHVzIGNoYW5nZWQgZnJvbSAlb2xkJSB0byAlbmV3JQ==
 </message>
 <name></name>
 <translate/>
 <parameter>
 <message>NjJlYzUxNGUtYmMzOC00YWVlLTgzMGQtY2M4MDJlZTJhYWRk</message>
 <name>eid</name>
 </parameter>
 <parameter>
 <message>Mw==</message>
 <name>new</name>
 <translate/>
 </parameter>
 <parameter>
 <message>Mw==</message>
 <name>old</name>
 <translate/>
 </parameter>
 </info>
 </event>
 </data>
</packet>

86

Using XML API

A subscription remains in effect for the duration of the session. If a client program
disconnects and then re-connects again, the subscription is canceled and the client has to
subscribe again. The events that might have happened during that time will be unknown to
this client. However, the majority of the events are logged internally by Agent. The even log
can be accessed using the event_log interface.

To stop receiving the event notifications, use the following call:

Input
<packet version="4.0.0" id="2">
 <data>
 <system>
 <unsubscribe>
 <name>subscription_name</name>
 </unsubscribe>
 </system>
 </data>
</packet>

87

Using XML API

Request Routing
Request routing is an Agent feature that allows to specify the target server to which a request
message should be sent. There are two types of request routing that you can use in your
client applications:

• Local routing -- allows to route a request from the host server to any of the virtual
environments.

• Global routing -- allows to route a request from the Management Node to any of the
Slave Nodes or virtual environments.

Local Routing

Most of the XML API calls have an input parameter which is used to specify the EID of the
machine on which the operation should be performed. For example, when you start or stop a
Virtuozzo Container, you pass its EID to the call. In contrast, calls that allow to perform
operations on both the virtual environments and the host server are usually missing this
parameter. For example, the filer/list call (lists files and directories) does not have the
EID parameter. So, how do you get file listing for a particular virtual environment? That's
where request routing comes in. You can tell Agent to route the request to the specified
virtual environment and execute it there instead of executing it on the host server. You
accomplish this by including the dst/host (destination host) parameter in the Agent request
message header to contain the EID of the target virtual environment. By not including the
dst/host parameter in the message header, you are instructing Agent to perform the
operation on the host itself. The following samples illustrate how to use the request routing
feature.

In the first sample, the request message does not have the request routing information, so
the response packet will contain a list of files located in the specified folder on the host
server.

Input
<packet version="4.0.0">
 <target>filer</target>
 <data>
 <filer>
 <list>
 <cwd>Lw==</cwd>
 <path>Lw==</path>
 </list>
 </filer>
 </data>
</packet>

88

Using XML API

The request message in the second sample has the request routing information. The
destination server EID is included in the request using the dst/host element in the message
header. As a result, the request will be sent to the specified virtual environment. The result will
then be routed back to the client and will contain a list of files located in the specified folder of
the specified virtual environment.
<packet version="4.0.0">
 <dst>
 Host3b8f950a-981d-b94d-bde1-647df39674f1</host>
 </dst>
 <target>filer</target>
 <data>
 <filer>
 <list>
 <cwd>Lw==</cwd>
 <path>Lw==</path>
 </list>
 </filer>
 </data>
</packet>

When exactly do you use request routing? Here are a few simple rules:

• Use request routing if you want to perform an operation on a virtual environment but the
API call that you want to use doesn't have an input parameter to specify the EID.

• Don't use request routing if a call has a parameter to specify the EID. If you try to route
such a request to a virtual environment by mistake, it will fail with a message saying that
this functionality is not supported.

There are only a few interfaces in the Agent XML API that utilize the request routing
functionality. Here's the list:

Class name Description

computerm Computer management. Provides methods for managing hosts
and virtual environments as if they were regular physical
machines.

filer Provides methods for managing files and directories on hosts
and virtual machines.

firewallm Firewall management (Linux only).

processm System processes management. Provides methods for
managing system processes and for executing programs on
hosts and in virtual environments.

servicem Services management. Provides calls for managing the
operating system services on hosts and virtual environments.

userm Provides calls for managing users and groups on hosts and
virtual environments.

To use request routing in your client applications, you don't have to manually install Agent
inside a virtual environment. All the necessary Agent components are installed automatically
when a virtual environment is created.

Global request routing

89

Using XML API

The request routing feature can be used to specify the target Slave Node or any of the virtual
environments residing on any node. For example, if you are connected to the Management
Node, but would like to get the list of virtual environments from a particular Slave Node, you
can do that by routing the request to that node using the dst/host parameter.

If the destination server is a Slave Node (physical machine), you can route any request to it. In
this case the list of the interfaces that can utilize the request routing functionality is not limited
to the short list that we've included earlier in this section. If the destination is a virtual
environment, use request routing only with the interfaces listed in the table above.

Please note that you can only route Agent requests to other nodes if you are connected to
the Management Node. You cannot route requests between Slave Nodes.

Using SOAP API

The material in this chapter is intended for developers who would like to develop client
applications using SOAP API. To use this documentation productively, you should have a
basic idea of what SOAP is, some programming experience, and a knowledge of one of the
programming languages such as C#. We also assume that you are comfortable working with
XML and have some experience working with XML Schema language (also referred to as
XML Schema Definition or XSD).

In This Chapter

Introduction...90
Creating a Simple Client Application..91
Developing Agent SOAP Clients ..110
Managing Containers ..113
Other SOAP Clients and Their Known Issues ..152
Troubleshoting ..154

Introduction
This section provides an introduction to the PVA Agent SOAP API.

Overview

PVA Agent SOAP API is implemented as industry-standard Web Services. With SOAP API,
you build your client applications using one of the third-party development tools that can
generate client code from the provided WSDL documents. The code generated from WSDLs
is a set of objects in your application's native programming language. You work with data
structures using object properties and you make API calls by invoking object methods.

The SOAP API shares XML Schema with the PVA Agent XML API, so the basic structure of
the input and output data is the same in both APIs. The Using XML API chapter (p. 20)
provides general information on the XML schema, the detailed description of the XML API
request and response packets, and other important information. The PVA Agent XML API
Reference guide provides a complete XML API reference. When working with SOAP API,
use the XML API reference material to find the descriptions of the requests, their input and
output parameters, and XML code examples.

C H A P T E R 5

Using SOAP API

91

Using SOAP API

Key Features

The following describes the key SOAP API features:

• Supports the full set of the Agent on-demand functionality.

• Provides WSDL documents for automatic code generation.

• Supports a variety of third-party SOAP clients, including Microsoft .NET Framework.

• Supports SOAP 1.1 and WSDL 1.1.

Limitations

SOAP API in the Agent protocol version 4.0.0 has the following limitations:

• Operates only over the HTTPS protocol.

• Does not support asynchronous request processing.

Generating Client Code from WSDL

When programming with the SOAP API, you will need the location of the WSDL documents in
order to generate proxy classes. The WSDLs can be found at the location that uses the
following format, where VERSION is the Agent protocol version number:

http://www.swsoft.com/webservices/vza/VERSION/VZA.wsdl

The URL to the current version 4.0.0 is as follows:

http://www.swsoft.com/webservices/vza/4.0.0/VZA.wsdl

Your SOAP client should have a documentation describing how to generate proxy classes
from WSDL. Please follow the instructions and supply the URL of the Agent WSDL
documents when asked to do so. If you are using Microsoft Visual Studio .NET, then you will
find instructions on how to generate and use the code in the Creating a Simple Client
section (p. 91).

Creating a Simple Client Application
This section walks you through the basics of creating a simple client application using Agent
SOAP API. We will use Microsoft Visual Studio .NET and will write our program in C#. The
complete program code is included in the Complete Program Code section (p. 104).

92

Using SOAP API

Step 1: Choosing a Development Project

You can choose any type of Visual Studio .NET C# project for your application. Your choice
depends on your application requirements only. For our sample program, let's select C#
Windows console application project and call it VzSimpleClient.

1 In Microsoft Visual Studio .NET, select File > New > Project. The New Project windows
opens.

2 In the Project Types tree, select Visual C# > Windows and then select Console
Application in the Templates pane.

3 Enter VzSimpleClient as the name for your project and choose a location for your
project files and click OK.

Note: If you are using Microsoft Visual Studio .NET 2005 and if your default project files location is
set to C:\Documents and Settings\user_name\My Documents\Visual Studio
2005\Projects\project_name\.., you will have to choose a location with a shorter path.
The reason is that there's an issue with Visual Studio 2005 C# method generation from WSDL (we
will discuss the issue in detail later in this guide). As a solution, we will create a batch file that will fix
the problem. The file will be placed into and run from the directory that contains the Web
References folder (usually ..\Projects\project_name\project_name\), but because of
the 256 character command line limit imposed by the Microsoft NTFS file system, the full
pathname must fit within this limit or the C# compiler will not be able to run the batch file.

Step 2: Generating Proxy Classes From WSDL

1 In the Solution Explorer pane, select the VzSimpleClient project.

2 On the Project menu, select Add Web Reference. The Add Web Reference window
opens.

In the URL field, type (or copy and paste) this URL:
http://www.swsoft.com/webservices/vza/4.0.0/VZA.wsdl

1 Press the Go button next to the URL field. Visual Studio will try to retrieve the PVA Agent
web service information from the Internet. After a few seconds (depends on the
connection speed), you should see a single entry in the Web services found at this URL
list box: 1 Service Found: - VZA

2 Type VZA in the Web reference name field replacing the default value (in general, you
can choose any name that you like). This name will be used in your code as the C#
namespace to access the selected service.

Press the Add Reference button. This will generate proxy classes from the WSDL
specifications and will add them to the project. A new item VZA will appear in the Solution
Explorer in the Web References folder. You can now start using generated classes to
access PVA Agent services.

93

Using SOAP API

Step 3: Fixing Get/Set Method Name Conflict

The problem discussed in this section may not apply to all developers. To see if it applies to
you, try building the solution after generating proxy classes from WSDL. Select Build > Build
Solution from the main menu. After the build is complete, see if the Microsoft Visual C#
compiler reports errors similar to the following:
error CS0542: 'set_xxx': member names cannot be the same as their enclosing type

If you don't get the errors, you may skip this section. If you do, please read on.

The Problem

Microsoft Visual C# .NET may produce errors when generating client code from WSDL similar
to the following example:
<xs:element name="set_xxx">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="xxx" type="XXXtype" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Note that the function set_xxx has a parameter xxx. Microsoft Visual C# .NET will generate
the following code:
public partial class set_xxx {
 private string xxxField;
 /// <remarks/>
 public string xxx {
 get {
 return this.xxxField;
 }
 set {
 this.xxxField = value;
 }
 }
}

As you can see, the function has the same name as the class name. This causes the C#
compiler to produce the error described in the beginning of this section.

The Solution

Create a batch file wsdlc.bat containing the following code and save it in your project
directory:
setlocal
set WS=%~f1Web References\VZA

copy "%WS%\Reference.map" "%WS%\Reference.discomap"

"%VS80COMNTOOLS%\..\..\SDK\v2.0\Bin\wsdl.exe" /l:CS /fields
/out:"%WS%\Reference.cs" /n:%2.VZA "%WS%\Reference.discomap"

del "%WS%\Reference.discomap"

94

Using SOAP API

endlocal
exit /b 0

The file generates the new Reference.cs file (the file containing the proxy classes) fixing
the problem described above by generating regular properties instead of C#-style get/set
fields. Do not try to run the file by hand. It will be run automatically after we complete the rest
of the steps.

In the Microsoft Visual C# .NET development environment, select Project > Properties
menu item. Select Build Events option in the left pane. Now in the right pane, modify the
parameter Pre-build Event Command Line to contain the following line:
$(ProjectDir)wsdlc.bat $(ProjectDir) $(ProjectName)

Note: Make sure that the Reference.cs file is not currently opened in the IDE, otherwise the
compiler will use it instead of the new file that will be generated by our batch file.

Select the Build > Build Solution menu option to build your solution. This will take longer
than usual because the wsdlc.bat file that we created will re-generate the proxy classes.

After the build is completed, the Reference.cs file will contain newly generated stubs. At
this point you can remove or comment out the entry that we used in the Project >
Properties > Pre-build Event Command Line option. If that's not done, the stubs will be
re-generated every time you build your solution.

If you decide to update the client code from WSDLs, repeat the steps described above.

The request describing this defect was submitted to Microsoft: #FDBK46565.

95

Using SOAP API

Step 4: Main Program File

At this point, you should see the Program.cs file opened in your Visual Studio IDE. This is
the main file where we will write our program code. The file should contain the following code:
using System;
using System.IO;
using System.Collections.Generic;
using System.Text;
using VzSimpleClient.VZA;

namespace VzSimpleClient
{
 class Program
 {
 static void Main(string[] args)
 {
 // Wait for the user to press a key, then exit.
 Console.Read()
 }
 }
}

We've added the necessary using directives and we've also added the Console.Read()
line to the Main() function to keep the console window open until a keyboard key is
pressed.

Certificates Policy Preparation

Since Agent SOAP uses HTTPS as a transport protocol, we have to deal with the certificate
issues. For the purpose of this example, we're going to use the "trust all certificates" policy.
We'll create a class that implements such a policy for us and passes it to the certificate policy
manager during login.
///<summary>
/// Sample class TrustAllCertificatePolicy.
/// Used as a certificate policy provider.
/// Allows all certificates.
///</summary>
public class TrustAllCertificatePolicy : System.Net.ICertificatePolicy
{
 public TrustAllCertificatePolicy()
 { }

 public bool CheckValidationResult(System.Net.ServicePoint sp,
 System.Security.Cryptography.X509Certificates.X509Certificate cert,
 System.Net.WebRequest req, int problem)
 {
 return true;
 }
}

96

Using SOAP API

Connection URL

PVA Agent listens for secure HTTPS requests on port 4646. The connection URL will look
similar to the following example (substitute the IP address value with the address of your
server):
https://192.168.0.218:4646

You may also communicate with Agent using HTTP. In this case, the port number is 8080
and the URL should look like this:
http://192.168.0.218:8080

The URL will be used as an input parameter during the login procedure described in the
following step.

97

Using SOAP API

SOAP Object Binding

In order to send SOAP messages, we will need a helper class that will initialize type binding.
In particular, this class will provide methods allowing to set up an Agent message header
containing the URL, the session ID, and the target operator name.
public class Binder
{
 // Method to bind types.
 // Parameters
 // bindingType: Object name.
 // target: If set to true, will add the "target"
 // argument to the message header.
 // If set to false, will omit the "target"
 // argument.
 // "Target" is the name of the Agent
 // operator that processes a particular
 // request type on the server side.
 // For some requests, this argument
 // must be omitted.
 //
 public System.Object InitBinding(System.Type bindingType, bool target)
 {
 string typeName = bindingType.Name;
 System.Object Binding =
 bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);
 packet_headerType header = new packet_headerType();
 header.session = session;
 if (target)
 {
 header.target = new string[1];
 header.target[0] = typeName.Replace("Binding", "");
 }
 bindingType.GetField("packet_header").SetValue(Binding, header);
 return Binding;
 }

 // Same as above, but will add the "target" argument to the
 // message header by default.
 public System.Object InitBinding(System.Type bindingType)
 {
 string typeName = bindingType.Name;
 System.Object Binding =
 bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);
 packet_headerType header = new packet_headerType();
 header.session = session;
 header.target = new string[1];
 header.target[0] = typeName.Replace("Binding", "");
 bindingType.GetField("packet_header").SetValue(Binding, header);
 return Binding;
 }

 public Binder(string url,string sess)
 {
 URL = url;
 session = sess;
 }
 string URL;

98

Using SOAP API

 string session;
}

99

Using SOAP API

Logging in and Creating a Session

The following is an example of a function that logs the user in using the supplied connection
and login parameters.

Sample function parameters:

Name Description

url PVA Agent URL. See the Connection URL section.

name User name. We will be login in as a system administrator of the host server. You
will need to know the password of your host server administrator account.

domain We are not going to use this parameter in this example. For more information on
its usage, see Parallels Agent XML Programmer's Reference Guide.

realm Realm ID. Realm is a database containing user authentication information. Agent
supports various types of authentication databases, including operating system
user registries and LDAP-compliant directories, such as AD/ADAM on Windows
and OpenLDAP on Linux. In our example, we will be using the user registry of the
host server, which is called System Realm in Agent terminology. The globally
unique ID that Agent uses for the System Realm is 00000000-0000-0000-
0000-000000000000.

The function authenticates the specified user and, if the supplied credentials are valid, creates
a session for the user and returns the session ID. All subsequent Agent requests must
include the session ID in order to be recognized by Agent.

Sample function:
/// <summary>
/// Sample function Login.
/// Authenticates the user using the specified credentials and
/// creates a new session.
/// </summary>
/// <param name="url">Agent URL.</param>
/// <param name="name">User name.</param>
/// <param name="domain">Domain.</param>
/// <param name="realm">Realm ID.</param>
/// <param name="password">Password</param>
/// <returns>New session ID.</returns>
///
public string Login(string url, string name, string domain, string realm, string
password)
 {
 try {
 System.Net.ServicePointManager.CertificatePolicy = new
TrustAllCertificatePolicy();

 // Login information object.
 login1 loginInfo = new login1();

 /* The sessionmBinding class provides the login and
 * session management functionality.
 */
 sessionmBinding sessionm = new VZA.sessionmBinding();

100

Using SOAP API

 /* Instantiate the System.Text.Encoding class that will
 * be used to convert strings to byte arrays.
 */
 System.Text.Encoding ascii = System.Text.Encoding.ASCII;

 // Populate the connection and the login parameters.
 sessionm.Url = url;
 loginInfo.name = ascii.GetBytes(name);
 if (domain.Length != 0) {
 loginInfo.domain = ascii.GetBytes(domain);
 }
 if (realm.Length != 0) {
 loginInfo.realm = realm;
 }
 loginInfo.password = ascii.GetBytes(password);

 // Log the specified user in.
 return sessionm.login(loginInfo).session_id;
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

101

Using SOAP API

Retrieving a List of Containers

The following function retrieves a list of Virtuozzo Containers from the Hardware Node. The
function accepts a numeric code specifying the Container state as a parameter allowing you
to retrieve the information only for the Containers in a particular state (running, stopped, etc.).
The state codes are as follows:

Code Name

0 Unknown

1 Unexisting

2 Config

3 Down

4 Mounted

5 Suspended

6 Running

7 Repairing

8 License Violation

The function returns a string containing the list of hostnames and states (running, stopped,
etc.) of the existing Containers.
/// <summary>
/// sample function GetVEList.
/// Retrieves the list of Containers.
/// </summary>
/// <param name="state">Container state code.</param>
/// <returns>Container names.</returns>
///
public string GetVEList(int state)
{
 string list_result = "";

 try
 {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 get_list1 velist = new get_list1();

 /* Set the Container state parameter.
 * -1 in our example means ignore the state.
 */
 if (state != -1)
 {
 env_statusType[] env_status = new env_statusType[1];
 env_status[0] = new env_statusType();
 env_status[0].state = state;
 env_status[0].stateSpecified = true;
 velist.status = env_status;
 }

102

Using SOAP API

 /* Get the list of the Containers, then loop through it getting the
 * EID and the name for each Container
 */

 foreach (string ve_eid in env.get_list(velist))
 {
 // Set Environment ID for which to get the info.
 get_info2 ve_info = new get_info2();
 ve_info.eid = new string[1];
 ve_info.eid[0] = ve_eid;

 // Include the "config" parameter to retrieve
 // the VE configuration info. If the parameter
 // is omitted, only the basic info will be included.
 ve_info.config = new get_infoConfig1();

 // Get the Container hostname and state info
 // from the Container configuration structure.
 envType env_config = env.get_info(ve_info)[0];
 string env_hostname = env_config.virtual_config.hostname;

 // The state is returned as a numeric code. The
 // following switch statement resovles it into a string.
 string env_state = "";

 switch (env_config.status.state)
 {
 case 0:
 env_state = "Unknown";
 break;
 case 1:
 env_state = "Unexisting";
 break;
 case 2:
 env_state = "Config";
 break;
 case 3:
 env_state = "Down";
 break;
 case 4:
 env_state = "Mounted";
 break;
 case 5:
 env_state = "Suspended";
 break;
 case 6:
 env_state = "Running";
 break;
 case 7:
 env_state = "Repairing";
 break;
 case 8:
 env_state = "License Violation";
 break;
 default:
 env_state = "Unknown";
 break;
 }

 // Populate the string for screen output.

103

Using SOAP API

 list_result += env_hostname + "\t" + env_state + "\n";
 }
 }
 catch (Exception e)
 {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
}

Step 5: Running the Sample

You can build and run the program now. From the main menu, select Build and then Build
Solution. Then select Debug -> Start (or Start without Debugging) to run the sample.

104

Using SOAP API

Complete Program Code
using System;
using System.IO;
using System.Collections.Generic;
using System.Text;
using VzSimpleClient.VZA;

namespace VzSimpleClient
{
 class Program
 {
 Binder binder; // Binder object variable.
 string session_id = ""; // Agent session ID.

 // Main.
 static void Main(string[] args)
 {
 Program vzClient = new Program();
 try
 {
 vzClient.Run();
 }
 catch (System.Web.Services.Protocols.SoapException ex)
 {
 Console.WriteLine(ex.Code.ToString() + ", " + ex.Message);
 Console.WriteLine("Details:" + ex.Detail.InnerText);
 }
 catch (System.Xml.XmlException xmlex)
 {
 Console.WriteLine(xmlex.ToString());
 }
 catch (System.InvalidOperationException opex)
 {
 Console.WriteLine(opex.Message + "\n" + opex.InnerException);
 }
 Console.WriteLine("Press Enter to conintinue...");
 Console.Read();
 }

 ///<summary>
 /// Sample class TrustAllCertificatePolicy.
 /// Used as a certificate policy provider.
 /// Allows all certificates.
 ///</summary>
 public class TrustAllCertificatePolicy : System.Net.ICertificatePolicy
 {
 public TrustAllCertificatePolicy()
 { }

 public bool CheckValidationResult(System.Net.ServicePoint sp,
 System.Security.Cryptography.X509Certificates.X509Certificate
cert,
 System.Net.WebRequest req, int problem)
 {
 return true;
 }
 }

 /// <summary>

105

Using SOAP API

 /// Sample class Binder.
 /// Provides methods to create the specified binding object
 /// and to populate the Agent message header.
 /// </summary>
 public class Binder
 {
 string URL; // Agent URL.
 string session; // Agent session ID.

 // Constructor. Sets URL and session ID values.
 public Binder(string url, string sess)
 {
 URL = url;
 session = sess;
 }

 /// <summary>
 /// Method InitBinding (overloaded).
 /// Creates a binding object.
 /// <param name="bindingType">
 /// The name of the proxy class from which to
 /// create the object.
 /// </param>
 /// <returns>
 /// <para>New binding object.</para>
 /// </returns>
 /// </summary>
 public System.Object InitBinding(System.Type bindingType)
 {
 System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);

 // Set URL.
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);

 // Create the request message header object.
 packet_headerType header = new packet_headerType();

 // Set session ID.
 header.session = session;

 /* Set the "target" parameter in the Agent request
 * message header. The parameter must contain the name
 * of the corresponding Agent operator.
 * The operator name can be obtained from the name of the
 * proxy class. It is the substring from the beginning of the
name
 * followed by the "Binding" substring. For example, the name
 * of the corresponding operator for the "filerBinding" class is
 * "filer".
 * All Agent requests except "system" requests must have the
 * target operator value set. System is the only operator that
requires
 * the omission of the "target" parameter from the header.
 */
 if (bindingType != typeof(systemBinding))
 {
 header.target = new string[1];
 header.target[0] = bindingType.Name.Replace("Binding", "");
 }

106

Using SOAP API

 // Set the request message header.
 bindingType.GetField("packet_header").SetValue(Binding, header);
 return Binding;
 }

 /// <summary>
 /// Method InitBinding (overloaded).
 /// Creates a binding object.
 /// Allows to set destination Container.
 /// </summary>
 /// <param name="bindingType">
 /// The name of the proxy class from which
 /// to create the object.
 /// </param>
 /// <param name="eid">
 /// The EID of the destination Container to which to route
 /// the request message for processing.
 /// </param>
 /// <returns>
 /// <para>New binding object.</para>
 /// </returns>
 /// </returns>
 public System.Object InitBinding(System.Type bindingType, string eid)
 {
 System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);

 // Set URL.
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);

 // Create the request message header object.
 packet_headerType header = new packet_headerType();

 // Set session ID.
 header.session = session;

 /* Set the "target" parameter in the Agent request
 * message header.
 */
 if (bindingType != typeof(systemBinding))
 {
 header.target = new string[1];
 header.target[0] = bindingType.Name.Replace("Binding", "");
 }

 // Set the destination server EID.
 header.dst.host = eid;

 // Set the request message header.
 bindingType.GetField("packet_header").SetValue(Binding, header);
 return Binding;
 }
 }

 /// <summary>
 /// Sample function Login.
 /// Authenticates the user using the specified credentials and
 /// creates a new session.
 /// </summary>

107

Using SOAP API

 /// <param name="url">Agent URL.</param>
 /// <param name="name">User name.</param>
 /// <param name="domain">Domain.</param>
 /// <param name="realm">Realm ID.</param>
 /// <param name="password">Password</param>
 /// <returns>New session ID.</returns>
 ///
 public string Login(string url, string name, string domain, string realm,
string password)
 {
 try
 {
 System.Net.ServicePointManager.CertificatePolicy = new
TrustAllCertificatePolicy();

 // Login information object.
 login1 loginInfo = new login1();

 /* The sessionmBinding class provides the login and
 * session management functionality.
 */
 sessionmBinding sessionm = new VZA.sessionmBinding();

 /* Instantiate the System.Text.Encoding class that will
 * be used to convert strings to byte arrays.
 */
 System.Text.Encoding ascii = System.Text.Encoding.ASCII;

 // Populate the connection and the login parameters.
 sessionm.Url = url;
 loginInfo.name = ascii.GetBytes(name);
 if (domain.Length != 0)
 {
 loginInfo.domain = ascii.GetBytes(domain);
 }
 if (realm.Length != 0)
 {
 loginInfo.realm = realm;
 }
 loginInfo.password = ascii.GetBytes(password);

 // Log the specified user in.
 return sessionm.login(loginInfo).session_id;
 }
 catch (Exception e)
 {
 return "Exception: " + e.Message;
 }
 }

 /// <summary>
 /// sample function GetVEList.
 /// Retrieves the list of Virtuozzo Containers from the Hardware Node.
 /// </summary>
 /// <param name="state">Container state code.</param>
 /// <returns>Container names.</returns>
 ///
 public string GetVEList(int state)
 {
 string list_result = "";

108

Using SOAP API

 try
 {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 get_list1 velist = new get_list1();

 /* Set the Container state parameter.
 * -1 in our example means ignore the state.
 */
 if (state != -1)
 {
 env_statusType[] env_status = new env_statusType[1];
 env_status[0] = new env_statusType();
 env_status[0].state = state;
 env_status[0].stateSpecified = true;
 velist.status = env_status;
 }

 /* Get the list of the Containers, then loop through it getting
the
 * EID and the name for each Container
 */

 foreach (string ve_eid in env.get_list(velist))
 {
 // Set Environment ID for which to get the info.
 get_info2 ve_info = new get_info2();
 ve_info.eid = new string[1];
 ve_info.eid[0] = ve_eid;

 // Include the "config" parameter to retrieve
 // the VE configuration info. If the parameter
 // is omitted, only the basic info will be included.
 ve_info.config = new get_infoConfig1();

 // Get the Container hostname and state info
 // from the Container configuration structure.
 envType env_config = env.get_info(ve_info)[0];
 string env_hostname = env_config.virtual_config.hostname;

 // The state is returned as a numeric code. The
 // following switch statement resovles it into a string.
 string env_state = "";

 switch (env_config.status.state)
 {
 case 0:
 env_state = "Unknown";
 break;
 case 1:
 env_state = "Unexisting";
 break;
 case 2:
 env_state = "Config";
 break;
 case 3:
 env_state = "Down";
 break;

109

Using SOAP API

 case 4:
 env_state = "Mounted";
 break;
 case 5:
 env_state = "Suspended";
 break;
 case 6:
 env_state = "Running";
 break;
 case 7:
 env_state = "Repairing";
 break;
 case 8:
 env_state = "License Violation";
 break;
 default:
 env_state = "Unknown";
 break;
 }

 // Populate the string for screen output.
 list_result += env_hostname + "\t" + env_state + "\n";
 }
 }
 catch (Exception e)
 {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
 }

 /// <summary>
 /// The Run() function is called from Main().
 /// It contains the code that executes other sample functions.
 /// </summary>
 ///
 public void Run()
 {
 /* The Agent URL. Use the IP of
 * your own host server here.
 */
 string url = "http://192.168.1.12:8080/";

 // User name.
 string user = "root";

 // Domain name.
 string domain = "";

 /* Realm ID and password.
 * We are using the "system" realm here, so the
 * user will be authenticated against the
 * host operating system user registry.
 */
 string realm = "00000000-0000-0000-0000-000000000000";
 string password = "mypass";

 // Log the user in.
 session_id = this.Login(url, user, domain, realm, password);
 Console.WriteLine("Session ID: " + session_id);
 Console.WriteLine();

110

Using SOAP API

 // Create the Binder object.
 if (binder == null)
 {
 binder = new Binder(url, session_id);
 }

 // Get the list of Containers.
 Console.WriteLine(GetVEList(-1));
 Console.WriteLine();
 }
 }
}

Developing Agent SOAP Clients
This section provides useful information that will help you make your development efforts as
trouble-free as possible. Some of the material presented here will also help you to overcome
certain problems that may arise due to differences in SOAP client implementations for
different platforms.

SOAP API Reference

SOAP API shares XML Schema with the XML API. The WSDL documents from which you
generate your client code are based on the XML Schema and contain the same interfaces
and calls. The .NET SOAP client generates the key classes by adding the Binding postfix to
the original interface name. For example, the envm interface becomes the envmBinding
class in C#, the vzaenvm interface becomes vzaenvmBinding, and so forth. Each class
will have methods for performing specific tasks. These methods are the C# equivalents of the
XML API calls from the corresponding XML API interfaces. For example, if you compare the
envmBinding class methods with the envm XML API interface calls, you will see that the
two sets match. What this means is that the information provided in the Parallels Agent
XML Reference guide, describing interfaces and calls, equally applies to generated C#
classes and methods. You can use this information as a reference when developing your
SOAP applications.

111

Using SOAP API

Optional Elements

Many parameters that you supply to Agent API calls or receive from Agent are defined in the
XML schema as optional elements. This means that when composing a request message,
you include an element or omit it depending on the operation that you are trying to perform.
In response messages, an optional element may be similarly included or not. Unfortunately,
unlike the XML Schema optional elements, the class members in traditional programming
languages cannot be "optional" and therefore are handled differently in this respect. The
proxy classes generated from WSDL will have optional elements as primitive types (int,
bool, etc.), complex types (strings, classes, structures), and arrays. The following describes
how to handle each element type in your code.

Primitive Types

A primitive type member is usually flagged by a corresponding member of type bool
declared just below it. The name of the boolean variable is made of the name of the principal
member with an added Specified suffix.

As an illustration, let's take a look at the userType class.

public class userType {

 /// <remarks/>
 public userTypeInitial_group initial_group;

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("group")]
 public userTypeGroup[] group;

 /// <remarks/>
 public int uid;

 /// <remarks/>
 [System.Xml.Serialization.XmlIgnoreAttribute()]
 public bool uidSpecified;

 /// <remarks/>
 public string shell;

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute(DataType="base64Binary")]
 public System.Byte[] password;

 /// <remarks/>
 public string home_dir;

 /// <remarks/>
 public string name;

 /// <remarks/>
 public string comment;

 // ...
}

112

Using SOAP API

Note that the uid and uidSpecified class members form a pair. The value of the
uidSpecified member indicates whether the uid is present or not in the data, meaning if
it contains a meaningful value or not.

Before you try to read the value of the uid member, you have to check whether its value was
set when the response was generated on the server side. You do that by looking at the
corresponding boolean flag first, i.e. the value of the uidSpecified member. If the value is
true then uid was set and it contains a meaningful value. If the value is false then uid
was not set and therefore must be ignored.

When you assign a value to an "optional" member, you will have to set the corresponding
boolean flag to true in order for the element to be included in the packet. Here's an
example:
uid = 100;
uidSpecified = true;

If you don't set the xxxSpecified flag to true then the receiving code will evaluate the
corresponding optional element as "not included in the request" and will ignore its value.

Complex Types

The XML schema complex types are represented in C# by strings, classes, and structures.
An example of such an element is the initial_group member from the code example
above. To determine whether the element is present or not in the packet, check if the value of
the object is null:

if (initial_group == null)
{
 // The element is absent ...
}

Arrays

Finally, arrays (e.g. the group member in the example above) are considered optional if they
have a null value or are empty.

Elements with no Content

Some of the elements in the Agent protocol are used as flags. These are simple elements
that have no type and never contain any data. In XML, you either include the element in a
packet like this <some_element/>, or you simply omit it.

In C#, when passing an object of this kind to a method, you have to create it as an empty
object like this:
some_element myObject = new Object();

113

Using SOAP API

Base64-encoded Values

Because XML is text-based, not all ASCII characters are allowed to be passed as plain text.
That's why some elements of the Agent protocol are base64-encoded. In C#, elements of
this kind are represented as byte arrays. You don't have to additionally encode the data
meant for these arrays, just fill them with the necessary content. Here is an example:
VZA.login loginCred = new VZA.login();
System.Text.Encoding ascii = System.Text.Encoding.ASCII;
loginCred.user = user;
loginCred.password = ascii.GetBytes(password);

Timeouts

Microsoft .NET SP1 has the default timeout value for the XML Web service calls set to
100000 ms. If you use this default value, some of your calls will never have a chance to
complete. We've experienced the following error message related to this problem:
An unhandled exception of type 'System.Net.WebException' occurred in
system.Web.services.dll Additional information: The operation has timed-out.

You may receive a different message but the cause may still be the same -- the default
timeout value is too low. To avoid this problem, set the appropriate timeout value or set the
timeout value to infinite, as shown in the following example:
MyService service1 = new MyService();

// Infinite timeout.
service1.Timeout = -1;

// The timeout is set to 10 minutes.
service1.Timeout = 10 * 60 * 1000;

Managing Containers
The material in this section provides code examples that demonstrate how to perform the
most common Virtuozzo Containers management tasks.

114

Using SOAP API

Creating a Container

When creating a new Virtuozzo Container, the following configuration parameters are
mandatory and must be selected every time:

• Sample configuration name. Virtuozzo Containers software comes with a set of sample
configurations that are installed on the Hardware Node at the time the software is
installed. XML API provides the env_samplem/get_sample_conf call to retrieve the
list of the available configurations. In the example provided in this section, the C#
equivalent of that call is the env_samplemBinding.get_sample_conf() method.

• Virtuozzo OS Template. The list of the available templates can be retrieved using the
vzapackagem.get_list XML API call. The C# equivalent is
vzapackagemBinding.get_list call. For simplicity, we are not including this call in
the example because Virtuozzo for Windows currently comes with just one OS template,
and Virtuozzo for Linux has one template for each supported Linux distribution. For
example, the standard Red Hat Linux OS template name is redhat-as3-minimal.

The rest of the parameters that we use in this example are optional but are typically used
when a new Container is created. The following sample shows how to create a Virtuozzo
Container

Sample Function Parameters:

Name Description

name The name that you would like to use for the Container.

os_template The name of the OS template from which to create a Container.

platform Operating system type: linux or windows. This parameter will
be used in our function to select a sample configuration for the
Container. If the sample configuration is compatible with the
specified platform, we will use it. In a real application, you would
probably select the sample configuration in advance and would
pass its name to the method that actually creates a Container. In
this example, we automate this task while providing a
demonstration of how to retrieve the list of the available sample
configurations.

architecture CPU architecture, e.g. x86, ia64. This parameter, together with
the platform parameter (above) will also be used to determine
the sample configuration compatibility with the specified CPU
architecture.

hostname The hostname that you would like to use for the Container.

ip The IP address to assign to the Container.

netmask Container network netmask.

network Network interface ID: venet0 for Linux; venet1 for Windows.
These are the standard host-routed Virtuozzo network interfaces.
For other network configuration scenarios, please refer to the
Parallels Agent XML Programmer's Reference guide.

115

Using SOAP API

offline_management Specifies whether to turn the Offline Management feature on or
off.

Sample Function:

/// <summary>
/// Sample function CreateVE.
/// Creates a new Virtuozzo Container.
/// </summary>
/// <param name="name">Container name.</param>
/// <param name="os_template">OS template name.</param>
/// <param name="platform">Operating system type: linux or windows.</param>
/// <param name="architecture">CPU architecture (x86, ia64)</param>
/// <param name="hostname">Container hostname.</param>
/// <param name="ip">Container IP address.</param>
/// <param name="netmask">Netmask.</param>
/// <param name="network">Network interface ID.</param>
/// <param name="offline_management">
/// A flag specifyin whether to turn the "offline management"
/// feature on or off.
/// </param>
/// <returns>EID of the new Container.</returns>
public string CreateVE(string name, string os_template, string platform, string
architecture, string hostname, string ip, string netmask, string network, bool
offline_management)
{
 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 create create_input = new create();

 // Container configuration information.
 venv_configType1 veconfig = new venv_configType1();

 /* Retrieve the list of sample configurations.
 * Select the first one that is compatible with the
 * specified platform (Linux, Windows) and CPU architecture.
 */
 env_samplemBinding env_sample =
(env_samplemBinding)binder.InitBinding(typeof(env_samplemBinding));
 get_sample_conf get_sample = new get_sample_conf();
 sample_confType[] samples = env_sample.get_sample_conf(get_sample);

 if (samples != null) {
 foreach (sample_confType sample in samples) {
 if (sample.env_config.os != null) {
 if (sample.env_config.os.platform == platform &&
sample.env_config.architecture == architecture) {
 //Set Container sample
 veconfig.base_sample_id = sample.id;
 break;
 }
 }
 }
 }

 // Set OS template.
 templateType osTemplate = new templateType();

116

Using SOAP API

 osTemplate.name = os_template;
 veconfig.os_template = osTemplate;

 // Set Container name
 veconfig.name = name;

 // Set Container hostname
 veconfig.hostname = hostname;

 // Set Container IP address and netmask.
 ip_addressType[] ip_address = new ip_addressType[1];
 ip_address[0] = new ip_addressType();
 ip_address[0].ip = ip;
 ip_address[0].netmask = netmask;

 // Set network.
 net_vethType[] net = new net_vethType[1];
 net[0] = new net_vethType();
 net[0].host_routed = new object();
 net[0].id = network;
 net[0].ip_address = ip_address;
 veconfig.net_device = net;

 // Set the offline management feature.
 veconfig.offline_managementSpecified = true;
 veconfig.offline_management = offline_management;

 // Finalize the new Container configuration.
 create_input.config = veconfig;

 // Create the Container.
 return env.create(create_input).env.eid;

 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

The function invocation example:
createVE("sample_ve", "redhat-as3-minimal", "linux","x86", "sample_ve_hostname",
"10.16.3.179", "255.255.255.0", "venet0", true);

117

Using SOAP API

Starting, Stopping, Restarting a Container

To start a Container, use the vzaenvmBinding.start() method passing the Container
EID. See Creating a Simple Client Program for an example on how to obtain the list of the
EIDs from the host server.
/// <summary>
/// Sample function StartCT.
/// Starts the specified Container.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <returns>"OK" or error information.</returns>
public string StartCT(string ve_eid)
{
 try {

 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 start start_input = new start();

 // Set the EID of the Container.
 start_input.eid = ve_eid;

 // Start the VE.
 env.start(start_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

Stopping and Restarting a VE is similar to the example above. The following two functions
demonstrate how it's done.
/// <summary>
/// Sample function StopVE.
/// Stops a VE.
/// </summary>
/// <param name="ve_eid">EID of the container.</param>
/// <returns></returns>
public string StopVE(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 stop1 stop_input = new stop1();

 // Set ID.
 stop_input.eid = ve_eid;

 // Stop the Container.
 env.stop(stop_input);

 return "OK!";

118

Using SOAP API

 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

/// <summary>
/// Sample function RestartCT.
/// Restarts a Container.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <returns></returns>
public string RestartCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 restart1 restart_input = new restart1();

 // Set ID.
 restart_input.eid = ve_eid;

 // Restart the Container.
 env.restart(restart_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

Destroying a Container

To destroy a Container, use the vzaenvmBinding.destroy() method. The method
accepts EID of a Container as a single parameter.
/// <summary>
/// Sample function DestroyCT.
/// Destroys a VE.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <returns>"OK" or error information.</returns>
public string DestroyCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 destroy destroy_input = new destroy();

 // Set ID.
 destroy_input.eid = ve_eid;
 env.destroy(destroy_input);

 return "The Container has been destroyed.";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

119

Using SOAP API

Suspending and Resuming a Container

The following two examples show how to suspend and then resume the operation of a
Virtuozzo Container.
/// <summary>
/// Sample function SuspendCT.
/// Suspends a VE.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <returns>"OK" or error information.</returns>
public string SuspendCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 suspend1 suspend_input = new suspend1();

 // Set EID.
 suspend_input.eid = ve_eid;

 // Suspend Container.
 env.suspend(suspend_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

/// <summary>
/// Sample function ResumeVE.
/// Resumes a Container that was previuosly suspended.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <returns></returns>
public string ResumeVE(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 resume1 resume_input = new resume1();

 // Set EID.
 resume_input.eid = ve_eid;

 // Resume Container.
 env.resume(resume_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

120

Using SOAP API

Getting Container Configuration Information

The Container configuration information is stored on the host server. This configuration (also
called virtual configuration) is used by Virtuozzo to set the necessary Container parameters
when the Container is started. To retrieve a Container configuration, use the
vzaenvmBinding.get_info method. For the complete list and description of the input
parameters, see the vzaenvm/get_info call in the Parallels Agent XML Programmer's
Reference guide.

The following sample shows how to retrieve the complete configuration information for the
specified Container.
/// <summary>
/// Sample function GetConfig.
/// Retrives Container configuration information.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <returns>
/// A string containing the Container configuration information.
/// </returns>
public string GetConfig(string ve_eid)
{
 string ve_info = "";
 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The input parameters.
 get_info2 getInfo_input = new get_info2();
 string[] eids = new string[1];

 // Set EID of the Container for which to get the info.
 eids[0] = ve_eid;
 getInfo_input.eid = eids;

 // Get the Container information from the host.
 envType[] envtype = env.get_info(getInfo_input);

 // Get the Container configuration from the returned object.
 venv_configType veconfig = envtype[0].virtual_config;

 // Get Container name.
 ve_info += "Name: " + envtype[0].virtual_config.name + "\n";

 // Get Container description.
 if (envtype[0].virtual_config.description != null &&
envtype[0].virtual_config.description.Length != 0)
 ve_info += "Description: " +

System.Text.Encoding.ASCII.GetString(envtype[0].virtual_config.description) +
"\n" +
 //Get network configuration.
 "Network configuration: \n";
 if (envtype[0].virtual_config.address != null) {
 ve_info += "IP: " + veconfig.address[0].ip + "\n" +
 "Netmask: " + veconfig.address[0].netmask + "\n";

121

Using SOAP API

 }

 // Get Container hostname.
 ve_info += "HostName: " + veconfig.hostname + "\n" +
 // Get architecture
 "Architecture: " + veconfig.architecture + "\n" +
 // Get OS
 "OS name: " + veconfig.os.name + "\n" +
 "OS platform: " + veconfig.os.platform + "\n" +
 "OS kernel: " + veconfig.os.kernel + "\n" +
 "OS version: " + veconfig.os.version + "\n" +
 // Get status
 "Status: " + envtype[0].status.state.ToString() + "\n" +
 // Get QoS information.
 "QoS cur: " + veconfig.qos[0].cur.ToString() + "\n" +
 "QoS hard: " + veconfig.qos[0].hard.ToString() + "\n" +
 "QoS id: " + veconfig.qos[0].id + "\n" +
 "QoS soft: " + veconfig.qos[0].soft.ToString();// +"\n";

 }
 catch (Exception e) {
 ve_info += "Exception: " + e.Message;
 }
 return ve_info;
}

Configuring a Container

This section shows you how to modify a Container configuration. It is organized into
subsections each demonstrating how to modify a particular configuration parameter. The
basic idea behind modifying the Container configuration is simple. Agent SOAP API has
classes that hold the Container configuration parameters. You instantiate the necessary
classes (depending on the parameter type) and populate only those members (configuration
parameters) that you would like to modify. You then submit the populated objects to Agent
using the appropriate class and method. Upon receiving the new configuration, Agent will
updated only those parameters that you specified in the input structure.

122

Using SOAP API

Modifying IP Address

Sample Function Parameters:

Name Description

ve_eid The EID of the Container for which you would like to modify the configuration info.

new_ip The new IP address. A Virtuozzo Container may have multiple IP addresses
assigned to it. When modifying the IP address information, all of the existing
address information will be removed from the configuration and the new
addresses will be put in their place. In this example, we will be operating with a
single IP address for simplicity.

netmask New netmask.

network The name of the network interface for which you would like to modify the IP
address settings.

Sample Function:
/// <summary>
/// Sample function ModifyIP.
/// Modifies the Container IP address.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <param name="new_ip">New IP address.</param>
/// <param name="netmask">New netmask.</param>
/// <param name="network">Network interface name.</param>
/// <returns>"OK" or error information.</returns>
public string ModifyIP(string ve_eid, string new_ip, string netmask, string
network)
{
 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 set2 set_input = new set2();

 // Set EID of the Container.
 set_input.eid = ve_eid;

 // The Container configuration structure.
 venv_configType1 veconfig = new venv_configType1();

 // Set ip addresses.
 ip_addressType[] ip_address = new ip_addressType[1];
 ip_address[0] = new ip_addressType();
 ip_address[0].ip = new_ip;
 ip_address[0].netmask = netmask;

 // The network interface information structure.
 net_vethType[] net = new net_vethType[1];
 net[0] = new net_vethType();

 // Set the network parameters.
 net[0].host_routed = new object();
 net[0].id = network;

123

Using SOAP API

 net[0].ip_address = ip_address;
 veconfig.net_device = net;
 set_input.config = veconfig;

 // Modify the Container configuration.
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

Modifying Hostname
/// <summary>
/// Sample function ModifyHostname.
/// Modifies Container hostname.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <param name="new_hostname">New hostname.</param>
/// <returns>OK/Error.</returns>
public string ModifyHostname(string ve_eid, string new_hostname)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set EID.
 set_input.eid = ve_eid;

 venv_configType1 veconf = new venv_configType1();

 // Set new hostname
 veconf.hostname = new_hostname;
 set_input.config = veconf;

 // Modify the Container configuration.
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

124

Using SOAP API

Modifying Container Name
/// <summary>
/// Sample function ModifyName.
/// Modifies Container name.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <param name="new_name">New Container name.</param>
/// <returns>OK/Error.</returns>
///
public string ModifyName(string ve_eid, string new_name)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set EID.
 set_input.eid = ve_eid;
 venv_configType1 veconf = new venv_configType1();

 // Set new Container name.
 veconf.name = new_name;
 set_input.config = veconf;

 // Modify the Container configuration.
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

125

Using SOAP API

Modifying QoS Settings
/// <summary>
/// Sample function ModifyQoS.
/// Modifies Container QoS settings.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <param name="qos_id">QoS ID.</param>
/// <param name="hard">New hard limit value.</param>
/// <param name="soft">New soft limit value.</param>
/// <returns></returns>
public string ModifyQoS(string ve_eid, string qos_id, int hard, int soft)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set EID.
 set_input.eid = ve_eid;

 venv_configType1 veconfig = new venv_configType1();

 // Set Container QoS.
 veconfig.qos = new qosType[1];
 veconfig.qos[0] = new qosType();

 // Set QoS ID.
 veconfig.qos[0].id = qos_id;

 // Set hard limit
 veconfig.qos[0].hardSpecified = true;
 veconfig.qos[0].hard = hard;

 // Set soft limit
 veconfig.qos[0].softSpecified = true;
 veconfig.qos[0].soft = soft;

 // Modify the Container configuration.
 set_input.config = veconfig;
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

126

Using SOAP API

Modifying DNS Server Assignment
/// <summary>
/// Sample function ModifyDNS.
/// Modifies Container DNS server assignment.
/// </summary>
/// <param name="ve_eid">EID of the Container.</param>
/// <param name="new_nameserver">New nameserver name.</param>
/// <returns>OK/Error.</returns>
public string ModifyDNS(string ve_eid, string new_nameserver)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set EID.
 set_input.eid = ve_eid;

 // Container configuration.
 venv_configType1 veconfig = new venv_configType1();

 // Network device.
 veconfig.net_device = new net_vethType[1];
 veconfig.net_device[0] = new net_vethType();

 // Set Container DNS.
 veconfig.net_device[0].nameserver = new string[1];
 veconfig.net_device[0].nameserver[0] = new_nameserver;

 // Modify Container configuration.
 set_input.config = veconfig;
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

127

Using SOAP API

Cloning a Virtuozzo Container

Cloning refers to a process of creating an exact copy (or multiple copies) of a Virtuozzo
Container on the same host server. The new Container will have its own private area and root
directories but the rest of the configuration parameters will be exactly the same. This means
that even the parameters that should be unique for each individual Container (IP addresses,
hostname, name) will be copied unchanged. You don't have an option to specify new values
during the cloning operation. Instead, you will have to clone the Container first and then
update the configuration of the new Container(s) in a separate procedure. There are a few
exceptions to this rule. You can optionally specify custom private area and root directories for
the new Container, but only if you are creating a single copy of the source Container. You
also have an option to specify custom Container ID for each clone. If you don't want to set
these options manually, their values will be selected automatically.

You can clone both running and stopped Containers. There are a few differences when
cloning Containers on Windows and Linux platforms:

 On Linux, running source Container will be suspended momentarily during the cloning
operation. This is done in order to eliminate possible changes to the Container state and
status. Once all the data is read from the source Container, the Container is resumed and the
cloning operation proceeds normally.

On Windows, a snapshot of the source Container is taken on the fly, so the Container
operation is never interrupted during cloning.

The following sample illustrates how to clone an existing Container. The name of the C# class
that provides the cloning functionality is relocatorBinding (stepping ahead, this class
also provides the Container migration functionality that we'll discuss in the following section).
The XML API equivalent of the class is the relocator interface.

Sample Function Parameters:

Name Description

eid The EID of the Container to clone.

count The number of clones to create.

Sample Function:
/// <summary>
/// Sample function CloneCT.
/// Create an exact copy of the specified Container.
/// </summary>
/// <param name="eid">The EID of the source Container.</param>
/// <param name="count">Number of copies to create.</param>
/// <returns>EIDs of the new Virtuozzo Containers.</returns>
///
public string[] CloneCT(string eid, int count)
{
 cloneResponse response;

128

Using SOAP API

 try {
 // Instantiate the proxy class
 relocatorBinding relocator =
(relocatorBinding)binder.InitBinding(typeof(relocatorBinding));

 // The main input parameter.
 clone clone_input = new clone();

 // Set EID of the source Countainer.
 clone_input.eid = eid;

 // Number of copies to create.
 clone_input.count = 1;

 // Clone the Container(s).
 response = relocator.clone(clone_input);
 }
 catch (Exception e) {
 response = new cloneResponse();
 response.eid_list[0] = "Exception: " + e.Message;
 return response.eid_list;
 }
 return response.eid_list;
}

129

Using SOAP API

Migrating a Container to a Different Host

You can migrate an existing Container from one host to another. The resulting Container is
created as an exact copy of the source Container. To migrate a Container, the target host
server must have Virtuozzo Containers software and Agent installed on it.

The following V2V (virtual-to-virtual) migration types are supported:

• Offline migration. Performed on a stopped or running source Container. If the Container is
stopped, all its files are simply copied from the source host to the target host. If the
Container is running, the files are first copied to the target machine and then the
Container is stopped momentarily. At this point, the data that was copied to the target
machine is compared to the original data and the files that have changed since the
copying began are updated. The source Container is then started back up. The downtime
depends on the size of the Container but should normally take only a minute or so. Offline
migration is the default migration type.

• Simple online migration. Performed on a running source Container. In the beginning of the
migration process, the Container becomes momentarily locked and all of its data,
including the states of all running processes, is dumped into an image file. After that, the
Container operation is resumed, and the dump file is transferred to the target computer
where Virtuozzo Containers automatically creates a new Container from it.

• Lazy online migration. Instead of migrating all of the data in one big step (as in simple
online migration above), lazy migration copies the data over a time period. Initially, only the
data that is absolutely necessary to bring the new Container up is copied to the target
host. The rest of the data remains locked on the source host and is copied to the
destination host on as-needed basis. By using this approach, you can decrease the
services downtime to near zero.

• Iterative online. During the iterative online migration, the Container memory is transferred
to the destination node before the Container data is dumped into an image file. Using this
type of online migration allows to attain the smallest service delay.

• Iterative + lazy online migration. This type of online migration combines the techniques
used in both the lazy and iterative migration types, i.e. some part of Container memory is
transferred to the destination host before dumping a Container, and the rest of the data is
transferred on-demand after the Container has been successfully created on the target
host.

On successful migration, the original Container will no longer exist on the source node. This is
done in order to avoid possible conflicts that may occur if both Containers -- the original and
the copy -- are running at the same time. Although the original Container will no longer show
up in the Container list on the source node, the Container data will not be deleted. By default,
the data is kept in its original location (the Container private area) but the private area
directory itself will be renamed. If you wish, you can completely remove the original Container
data from the source node by including the options/remove parameter in the request.

130

Using SOAP API

The name of the C# class that provides the migration functionality is relocatorBinding.
The XML API equivalent is the relocator interface.

The following sample shows how to perform a V2V migration.

Sample Function Parameters:

Name Description

eid The EID of the source Container.

mn_type Migration type:

0 -- Offline

1 -- Simple online

2 -- Lazy online

3 -- Iterative online

4 -- Iterative lazy online

ip_address The target host server IP address.

This and the rest of the parameters are the connection and login
information that will be used to log in to the target host.

port Port number.

protocol Communication protocol to use:

SSL -- SSL over TCP/IP.

TCP -- plain TCP/IP.

NamedPipe -- named pipe.

username User name. The user must have sufficient rights to connect to the target
host.

realm Realm ID. The ID of the authentication database against which to
authenticate the specified user. In this example, we will be using the
system Realm -- the host operating system user registry.

password User password.

Sample Function:
/// <summary>
/// Sample function Migrate.
/// Migrates a Container to a different host.
/// </summary>
/// <param name="eid">The EID of the source Container.</param>
/// <param name="mn_type">Migration type.</param>
/// <param name="ip_address">Target HN IP address.</param>
/// <param name="port">Target HN port number.</param>
/// <param name="protocol">Communication protocol.</param>
/// <param name="username">
/// User name with which to login to the
/// target HN.
/// </param>
/// <param name="realm">

131

Using SOAP API

/// Realm ID on the target HN against which to authenticate the user.
/// </param>
/// <param name="password">User password.</param>
/// <returns>"OK" or error information.</returns>
///
public string Migrate(string eid, int migration_type, string ip_address, uint
port, string protocol, string username, string realm, string password)
{
 try {
 relocatorBinding relocator =
(relocatorBinding)binder.InitBinding(typeof(relocatorBinding));
 migrate_v2v v2v_input = new migrate_v2v();

 // Set EID of the source Container.
 v2v_input.eid_list = new string[1];
 v2v_input.eid_list[0] = eid;

 /* Set migration type.
 * The "options" member allows you to set other
 * migration options. See Agent XML Reference
 * for more info.
 */
 v2v_input.options = new v2v_migrate_optionsType();
 v2v_input.options.type = migration_type;

 // Set the target host connection info.
 v2v_input.dst = new connection_infoType();
 connection_infoType connection_parm = (connection_infoType)v2v_input.dst;

 // Set the target host IP address.
 v2v_input.dst.address = ip_address;

 // Set the port number.
 v2v_input.dst.portSpecified = true;
 v2v_input.dst.port = port;

 // Set protocol.
 v2v_input.dst.protocol = protocol;

 // Set login parameters.
 v2v_input.dst.login = new auth_nameType();
 v2v_input.dst.login.name =
System.Text.ASCIIEncoding.ASCII.GetBytes(username);
 v2v_input.dst.login.realm = realm;

 // Set user password.
 v2v_input.dst.password =
System.Text.ASCIIEncoding.ASCII.GetBytes(password);

 // Set infinite timeout for the request.
 relocator.Timeout = -1;
 relocator.migrate_v2v(v2v_input);

 return "OK";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

132

Using SOAP API

Backup Operations

Agent SOAP API provides a set of methods that allow to perform Virtuozzo Container backup
and restore operations. The following subsections describe some of the most common
operation scenarios and provide code samples.

Backing up a Container

The following sample illustrates how to use the backupmBinding.backup_env method to
create a backup of a Virtuozzo Container.

Sample Function Parameters:

Name Description

eid The EID of the source Container.

description Backup description.

type Backup type:

0 -- Full (default). A full backup is a starting point for all other backup
types.

1 -- Incremental. Only the files that have changed since the last full,
incremental, or differential backup are included. When restoring from an
incremental backup, you'll need the latest full backup as well as every
incremental and/or differential backup that you've made since the last full
backup.

2 -- Differential. Only the files that have changed since the last full
backup are included. When restoring from a differential backup, only the
latest differential backup itself and the latest full backup is needed.

compression Compression level:

0 -- no compression.

1 -- normal (default).

2 -- high.

3 -- maximum.

 The following parameters are used to specify the backup server
connection and login information. The sample function provided here
illustrates how to specify the backup server connection and login
information manually.

Note: To use a remote computer as a backup server, you
must install Virtuozzo Containers software on it.

133

Using SOAP API

ip Backup server IP address.

user Login name.

password Login password.

realm Realm ID against which to authenticate the user. The Realm definition
must exist in the Agent configuration on the backup server.

On a fresh Agent installation, the only Realm available is System -- a
predefined Realm that refers to the operating system user registry on the
host server. The System Realm ID is 00000000-0000-0000-0000-
000000000000.

protocol Communication protocol:

SSL -- SSL over TCP/IP.

TCP -- plain TCP/IP.

NamedPipe -- named pipe.

port Port number. Agent on the source server will be connecting to the Agent
on the backup server, the TCP port numbers therefore are the standard
Agent options (see Connectivity (p. 16)).

Sample Function:
/// <summary>
/// Sample function BackupVE.
/// Performs a Container backup.
/// </summary>
/// <param name="eid">EID of the source Container.</param>
/// <param name="description">
/// User-defined backup description.
/// </param>
/// <param name="type">Backup type.</param>
/// <param name="compression">Compression level.</param>
/// <param name="ip">Target HN IP address.</param>
/// <param name="user">
/// User name with which to login to
/// the target host server.
/// </param>
/// <param name="password">User password.</param>
/// <param name="realm">Realm ID.</param>
/// <param name="protocol">Communication protocol.</param>
/// <param name="port">Target HN port number</param>
/// <returns>Backup ID.</returns>
///
public string BackupVE(string eid, string description, int type, int compression,
string ip, string user, string password, string realm, string domain, string
protocol, uint port)
{
 try {
 // Instantiate the proxy class
 backupmBinding backupm =
(backupmBinding)binder.InitBinding(typeof(backupmBinding));

 // The main input object.
 backup_env backup_input = new backup_env();

 // Set EID of the Container.
 backup_input.env_list = new string[1];

134

Using SOAP API

 backup_input.env_list[0] = eid;

 // Set backup options.
 backup_optionsType options = new backup_optionsType();

 // Backup description.
 options.description =
System.Text.ASCIIEncoding.ASCII.GetBytes(description);

 // Backup type.
 options.typeSpecified = true;
 options.type = type;

 // Compression level.
 options.compressionSpecified = true;
 options.compression = compression;

 // Set the backup server login information.
 auth_nameType login_info = new auth_nameType();

 // User name.
 login_info.name = System.Text.ASCIIEncoding.ASCII.GetBytes(user);

 // Realm ID.
 login_info.realm = realm;

 // Domain name.
 login_info.domain = System.Text.ASCIIEncoding.ASCII.GetBytes(domain);

 // Set the backup server connection information.
 connection_infoType connection = new connection_infoType();

 // Backup server IP address.
 connection.address = ip;

 // Communication protocol.
 connection.protocol = protocol;

 // Port number.
 connection.portSpecified = true;
 connection.port = port;

 // Password.
 connection.password = System.Text.ASCIIEncoding.ASCII.GetBytes(password);

 // Finalize the input.
 connection.login = login_info;
 backup_input.backup_server = connection;
 backup_input.backup_options = options;

 // Set infinite timeout for the request.
 backupm.Timeout = -1;

 // Start backup.
 return backupm.backup_env(backup_input)[0].id;

 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

135

Using SOAP API

The function invocation example:
createBackup("ac57a9c3-573b-481a-b398-d2fb0467cf4b", "my backup", 0, 0,
"10.16.3.80", "root", "my_password", "00000000-0000-0000-0000-000000000000",
"TCP", 4433);

136

Using SOAP API

Listing Backups

To get the list of the existing backups, use the backupmBinding.list method. The
method retrieves the list of backups from the Hardware Node. If your backup archives are
located on a remote backup server, you have to establish a direct Agent connection with it
and execute the call there. You can also use this method on the Management Node to get
the list of backups from any Slave Node.

The backupmBinding.list method returns the following backup information:

Name Description

time Backup date and time.

size The size of the backup archive.

type Backup type:

0 -- Full.

1 -- Incremental.

2 -- Differential.

id Backup ID. The ID is assigned to a backup by Agent when the backup is
created. The backup ID is universally unique.

You have to obtain the backup ID in order to restore a Container from a
backup.

storage_eid EID of the Node where the backup archive is located.

info Additional backup information.

eid The original EID of the source Container.

description Backup description. An optional property set by user. May be empty.

count The total number of backups stored on this Node (storage_eid) for
this Container (eid).

capability Backup capabilities. Specifies miscellaneous backup properties.

The following sample illustrates how to use the backupmBinding.list method to get the
list of all of the available backups from the Hardware Node.

Sample Function:

/// <summary>
/// Sample function LisBackups.
/// Retrives the list of backups from the
/// Hardware Node.
/// </summary>
/// <returns>
/// A string containing the list of backups
/// with detailed information for each backup.
/// </returns>
///
public string ListBackups()
{

137

Using SOAP API

 string list_result = "";
 try {
 // Instantiate the proxy class
 backupmBinding backupm =
(backupmBinding)binder.InitBinding(typeof(backupmBinding));

 // The main input parameter.
 list7 list_input = new list7();

 // Get the list of backups.
 backupType[] backups = backupm.list(list_input);

 // Itereate through the returned backup structure and
 // populate a string variable with the results.
 if (backups.Length != 0) {
 foreach (backupType backup in backups) {
 if (backup.description != null) {
 list_result += "\nDescription: ";
 }

 list_result +=
System.Text.ASCIIEncoding.ASCII.GetString(backup.description) +
 "\nID: " + backup.id +
 "\nEID: " + backup.eid +
 "\nCount: " + backup.count.ToString() +
 "\nSize: " + backup.size.ToString() +
 "\nType: " + backup.type.ToString() +
 "\nInfo name: " + backup.info.name +
 "\nTime: " + backup.time.ToString();
 }
 }
 else {
 list_result += "\nNo backups found.";
 }
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }

 return list_result;
}

The following example illustrates how to use the optional parameters in the backup listing
call. The sample function retrieves the most recent backup for the specified virtual
environment from the specified Slave Node.

Sample Function Parameters:

Name Description

slave_eid The EID of the Slave Node where the backups are stored. To get the
EIDs of the Slave Nodes, use the server_groupBinding.get_list
method.

ve_eid The EID of the virtual environment to get the backup info for. The
Container can reside on any Node.

latest A flag indicating whether to retrieve the information about the most
recent backup or about all of the available backups.

138

Using SOAP API

Sample Function:
/// <summary>
/// Sample function ListBackupsVZgroup.
/// </summary>
/// <param name="slave_eid">
/// EID of a slave Node from which to get the list of backups.
/// </param>
/// <param name="ve_eid">
/// EID of the Container to search for in the backups.
/// </param>
/// <param name="latest">
/// A flag. If set to true, the function will retrieve the
/// information about the latest available backup only.
/// If set to false, all available backups matching the
/// specified criteria will be retrieved.
/// </param>
/// <returns>A string containing the backup informaiton.</returns>
///
public string ListBackupsVZgroup(string slave_eid, string ve_eid, Boolean latest)
{
 string list_result = "";
 try {
 // Instantiate the proxy class
 backupmBinding backupm =
(backupmBinding)binder.InitBinding(typeof(backupmBinding));

 // The main input object.
 list7 list_input = new list7();

 // Set slave Node's EID.
 list_input.options.storage_eid = slave_eid;

 // Set Container's EID.
 list_input.options.eid = ve_eid;

 // Set the "latest" flag.
 if (latest) {
 list_input.options.latest = new Object();
 }

 // Get the backup info.
 backupType[] backups = backupm.list(list_input);

 // Itereate through the returned backup array.
 if (backups.Length != 0) {
 foreach (backupType backup in backups) {
 if (backup.description != null) {
 list_result += "\nDescription: ";
 }

 list_result +=
System.Text.ASCIIEncoding.ASCII.GetString(backup.description) +
 "\nID: " + backup.id +
 "\nEID: " + backup.eid +
 "\nCount: " + backup.count.ToString() +
 "\nSize: " + backup.size.ToString() +
 "\nType: " + backup.type.ToString() +
 "\nInfo name: " + backup.info.name +
 "\nTime: " + backup.time.ToString();
 }

139

Using SOAP API

 }
 else {
 list_result += "\nNo backups found.";
 }
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }

 return list_result;
}

140

Using SOAP API

Restoring a Container

To restore a Container from a backup archive, you first have to obtain its ID. The backup that
you are restoring from must be one of the following:

• A full backup, containing all the files and directories that are required for the Container to
operate properly.

• An incremental backup, plus all the prior incremental and differential backups, and the
original full backup from the same sequence.

• A differential backup, plus the original full backup from the same sequence.

By default, the Container will be restored on the Hardware Node that you are currently
connected to. When you are restoring a Container, an attempt will be made to restore it to
the original Node. If the original Node is no longer registered on the Management Node, you'll
have to set the target Node manually or the operation will fail. Regardless of the conditions
under which the restore operation is performed, the resulting Container will always have the
same EID as the original Container.

The samples in this section illustrates how to use the backupmBinding.restore_env
method to restore a Container from a backup archive. The following sample function accepts
a local backup ID and restores a Container on the current Hardware Node.

Sample Function:

/// <summary>
/// Sample function RestoreBackup.
/// Restores a Container from a backup.
/// </summary>
/// <param name="backup_id">Backup ID.</param>
/// <returns>"OK" or error information.</returns>
///
public string RestoreBackup(string backup_id) {
 string list_result = "";
 try {
 backupmBinding backupm =
(backupmBinding)binder.InitBinding(typeof(backupmBinding));

 // The main input object.
 restore_env restore = new restore_env();

 // Set backup id.
 restore.backup_id = backup_id;

 // Start restore.
 backupm.restore_env(restore);

 return "OK!";
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
}

141

Using SOAP API

The following sample shows how to restore a Container from a remote backup. In it, we pass
the backup ID and the backup server connection and login information.

Sample Function Parameters:

Name Description

backup_id Backup ID.

 The rest of the parameters specify the remote backup server connection
and login information.

142

Using SOAP API

ip IP address.

user User name.

realm Realm ID.

port TCP port number.

protocol Communication protocol.

password User password.

Sample Function:
/// <summary>
/// Sample function RestoreRemoteBackup.
/// Restores a Container from a remotely stored backup.
/// </summary>
/// <param name="backup_id">Backup ID.</param>
/// <param name="ip">Remote HN IP address.</param>
/// <param name="user">
/// User name with which to login to the remote HN node.
/// </param>
/// <param name="realm">Realm ID.</param>
/// <param name="port">Port number.</param>
/// <param name="protocol">Communication protocol.</param>
/// <param name="password">Password.</param>
/// <returns>"OK" or error information.</returns>
///
public string RestoreRemoteBackup(string backup_id, string ip, string user,
string realm, uint port, string protocol, string password)
{
 string list_result = "";

 try {
 // Instantiate the proxy class
 backupmBinding backupm =
(backupmBinding)binder.InitBinding(typeof(backupmBinding));

 // The main input object.
 restore_env restore = new restore_env();

 //Set backup id.
 restore.backup_id = backup_id;

 // The backup server connection info.
 connection_infoType connection = new connection_infoType();

 // Set IP address.
 connection.address = ip;
 auth_nameType name = new auth_nameType();

 // Set user name.
 name.name = System.Text.ASCIIEncoding.ASCII.GetBytes(user);

 // Set Realm ID.
 name.realm = realm;

 // Set port number.
 connection.portSpecified = true;
 connection.port = port;

 // Set communication protocol name.

143

Using SOAP API

 connection.protocol = protocol;
 connection.login = name;

 // Set user password.
 connection.password = System.Text.ASCIIEncoding.ASCII.GetBytes(password);

 // Finalize the backup server connection and login
 // parameters.
 restore.backup_server = connection;

 // Start restore.
 backupm.restore_env(restore);

 return "OK!";
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
}

The function invocation example:
restoreBackup("85a2dd71-9133-7c44-8521-f6bd517f17ca/0", "10.16.3.80", "root",
"my_password", "00000000-0000-0000-0000-000000000000", "TCP", 4433);

144

Using SOAP API

Getting Container Information From a Backup

Use the backupmBinding.get_info method to get the detailed Container information
from the specified backup archive. The information that can be retrieved includes the basic
Container information (EID, status, host EID) and the complete Container configuration.

On a standalone Hardware Node, the method can access only the local backups. To get the
info about a backup on a remote backup server, you'll have to establish a direct Agent
connection with it.

The following sample shows how to retrieve the Container information from a backup.

Sample Function:

/// <summary>
/// Sample function GetInfo.
/// Retrives information about the Container stored in the
/// specified backup.
/// </summary>
/// <param name="backup_id">Backup ID.</param>
/// <returns>Container information.</returns>
///
public string GetInfo(string backup_id)
{
 string info_result = "";

 try {

 // Instantiate the proxy class
 backupmBinding backupm =
(backupmBinding)binder.InitBinding(typeof(backupmBinding));

 // The main input object.
 get_info3 info = new get_info3();

 // Set backup id.
 info.backup_id = backup_id;

 // Populate the retrieval criteria.
 get_env_info_optionsType options = new get_env_info_optionsType();

 /* The options.env option is used as a flag.
 * If the options.env object is created, the result will
 * contain the complete Container info, including the Container
configuration.
 * If not, only the basic Container info will be included.
 */
 options.env = new get_env_info_optionsTypeEnv();

 /* If options.excludes object is created,
 * the result will also contain the names of
 * the Container files and directories that were included in
 * or excluded from the backup.
 */
 options.excludes = new object();

 // Set the options.
 info.options = options;

145

Using SOAP API

 // Get the Container info.
 env_backup_dataType data =
(env_backup_dataType)backupm.get_info(info).info;

 // Populate a string variable with the returned data.
 info_result += "\nEnvironment info:" +
 "\n Eid: " + data.env.eid +
 "\n Parent eid: " + data.env.parent_eid +
 "\n Name: " + data.env.virtual_config.name;

 // Get the configuration description.
 if (data.env.virtual_config.description != null &&
 data.env.virtual_config.description.Length != 0) {
 info_result += "\n Description: " +

System.Text.ASCIIEncoding.ASCII.GetString(data.env.virtual_config.description);
 }

 // Get the OS info.
 info_result += "\n Status: " + data.env.status.state.ToString()+
 "\n Architecture: " + data.env.virtual_config.architecture+
 "\n OS name: " + data.env.virtual_config.os.name+
 "\n OS platform: " + data.env.virtual_config.os.platform+
 "\n OS version: " + data.env.virtual_config.os.version+
 "\n OS kernel: " + data.env.virtual_config.os.kernel;

 // Get the Container IP address.
 if (data.env.virtual_config.address != null) {
 info_result += "\n IP: " + data.env.virtual_config.address[0].ip;
 }
 else {
 info_result += "\n No IP address!";
 }

 // Get the hostname.
 if (data.env.virtual_config.hostname != null) {
 info_result += "\n Hostname: " + data.env.virtual_config.hostname;
 }

 // Get the sample configuration ID.
 if (data.env.virtual_config.base_sample_id != null) {
 info_result += "\n Base sample id: " +
data.env.virtual_config.base_sample_id;
 }
 }
 catch (Exception e) {
 info_result += "Exception: " + e.Message;
 }
 return info_result;
}

146

Using SOAP API

Performance Monitor

Performance Monitor is an operator that allows to monitor the performance of the Hardware
Node and Virtuozzo Containers. By monitoring the utilization of the system resources, you
can acquire an important information about your Virtuozzo system health. Performance
Monitor can track a range of processes in real time and provide you with the results that can
be used to identify current and potential problems. It can assist you with the tracking of the
processes that need to be optimized, monitoring the results of the configuration changes,
identifying the resource usage bottlenecks, and planning of upgrades.

Agent SOAP API provides the perf_monBinding class that allows to retrieve performance
reports from the Hardware Node. The types of reports include the performance of the
Hardware Node itself and the performances of individual Virtuozzo Containers. You can
select the type and a particular aspect of the server performance that you would like to see.
This performance type is called a class. The performance aspect is called a counter. The
following sub-section describes classes and counters in more detail.

Classes, Instances, Counters

Performance Class

Performance class is a type of the system resource that can be monitored. This includes
CPU, memory, disk, network, etc. A class is identified by ID. See Appendix A: Performance
Counters (p. 161) for a complete list of classes. Please note that there are two separate
groups of classes: one is used for monitoring Virtuozzo Containers and the other for
monitoring Hardware Nodes.

Class Instance

While class identifies the type of the system resource, the term "instance" refers to a
particular device when multiple devices of the same type exist in the system. For example,
network in general is a class, but each network card installed in the system is an instance of
that class. Each class has at least one instance, but not all classes may have multiple
instances. An instance is identified by a name assigned to the corresponding device by the
operating system or Virtuozzo Containers. Appendix A: Performance Counters (p. 161)
provides information on how to obtain a list of instances for each class.

Performance Counter

Counters are used to measure various aspects of a performance, such as the CPU times,
network rates, disk usage, etc. Each class has its own set of counters. Counter data is
comprised of the current, minimum, maximum, and average values. For the complete list of
counters see Appendix A: Performance Counters (p. 161).

147

Using SOAP API

Getting a Performance Report

The following example consists of two functions working together. The functions retrieve the
latest performance report using the specified EID, performance class, and performance
counter. The GetPerfData function initializes and populates the necessary input
parameters, gets the performance data from Agent, and then calls the getData function
(described below) that extracts the data and puts it into a string that can be displayed on the
screen.

Sample Function Parameters:

Name Description

eid EID of the Container for which to retrieve the performance data.

class_name The name of the performance class.

counter_name The name of the performance counter.

Sample Function:
/// <summary>
/// Sample function GetPerfData.
/// Gets the Container or the Hardware Node performance data.
/// </summary>
/// <param name="eid"></param>
/// <param name="class_name"></param>
/// <param name="counter_name"></param>
/// <returns>A string containing the performance data.</returns>
///
public string GetPerfData(string eid, string class_name, string counter_name,
string class_instance)
{
 string perf_data = "";
 try {

 // Create binding object.
 perf_monBinding perf_mon =
(perf_monBinding)binder.InitBinding(typeof(perf_monBinding));

 // The main input object.
 get5 get_input = new get5();

 // Set EID.
 get_input.eid_list = new string[1];
 get_input.eid_list[0] = eid;

 /* Set the performance class name.
 * Multiple classes can be set if desired.
 */
 get_input.@class = new classType1[1];
 get_input.@class[0] = new classType1();
 get_input.@class[0].name = class_name;

 // Set class instance.
 get_input.@class[0].instance = new classTypeInstance[1];
 get_input.@class[0].instance[0] = new classTypeInstance();
 if (class_instance.Length != 0) {

148

Using SOAP API

 get_input.@class[0].instance[0].name = class_instance;
 }

 // Set counter. Multiple counters can be set if desired.
 get_input.@class[0].instance[0].counter = new string[1];
 get_input.@class[0].instance[0].counter[0] = counter_name;

 /* Get the performance data. The returned data is
 * extracted using the GetData helper function, which
 * is defined below.
 */
 GetData(perf_mon.get(get_input), out perf_data);
 }
 catch (Exception e) {
 perf_data += "Exception: " + e.Message;
 }
 return perf_data;
}

/// <summary>
/// Sample function GetData.
/// This is a helper function that extracts the performance
/// data retrieved by the getPerfData function defined above.
/// </summary>
/// <param name="counters_dat">
/// Contains the data for each class, instance, and counter that
/// were specified in the request that returned this object (the
/// perf_mon.get() call above). To extract the data, we have to iterate through
all
/// of them.
/// </param>
/// <param name="counters_info">
/// Output. A string containing the extracted data.
/// </param>
///
public void GetData(perf_dataType[] counters_dat, out string counters_info)
{
 counters_info = "";
 if (counters_dat.Length != 0) {
 foreach (perf_dataType counter_dat in counters_dat) {
 if (counter_dat.@class != null) {
 foreach (perf_dataTypeClass dat in counter_dat.@class) {
 counters_info += "\n Class name: " + dat.name + "\n" +
 "Instances:\n";
 if (dat.instance != null) {
 foreach (perf_dataTypeClassInstance instance in
dat.instance) {
 counters_info += " DataClassInstance: " +
instance.name + "\n";
 if (instance.counter != null) {
 foreach (perf_dataTypeClassInstanceCounter
counter in instance.counter) {
 counters_info += " \nName:" +
counter.name + "\n" +
 " avg: " + counter.value.avg + "\n" +
 " cur: " + counter.value.cur + "\n" +
 " max: " + counter.value.max + "\n" +
 " min: " + counter.value.min;
 }
 }
 else {

149

Using SOAP API

 counters_info += " No counters." + "\n";
 }
 }
 }
 else {
 counters_info += "No instances." + "\n";
 }
 }
 }
 else {
 counters_info += "No classes." + "\n";
 }

 counters_info += "Intervals:\n" +
 "Start time: " + counter_dat.interval.start_time + "\n" +
 "End time: " + counter_dat.interval.end_time + "\n" +
 "EID: " + counter_dat.eid + "\n";
 }
 }
 else {
 counters_info += "No data returned.";
 }
}

Monitoring Alerts

Alerts are notifications that report the system resource allocation problems such as
approaching or exceeding certain limits. Alerts are usually used for monitoring of the
Container health, predicting its performance, or collecting information that can be used to
optimize the Container performance. Use the alertmBinding class to check if a Container
has alerts of any kind currently raised and to retrieve the alert data if it does.

The alert levels are described in the table below.

Alert level ID Description

Green 0 Normal operation. This alert is raised when one of the higher-level
alerts is canceled.

Yellow 1 Moderately dangerous situation. The specified parameter is
coming close (within 10%) to its soft limit barrier.

Red 2 Critical situation. The parameter exceeded its soft limit or came
very close to the hard limit. Depending on the parameter type,
either some process can be killed at any time now, or the next
resource allocation request can be refused.

150

Using SOAP API

A Virtuozzo Container may have multiple alerts raised at any given time. The following
function demonstrates how you can check if a Container has any alerts currently raised, and
to retrieve the alert information if it does. The function accepts the list of Containers for which
to check and retrieve the alert information.
/// <summary>
/// Sample function GetAlerts.
/// Retrieves the system alert information for the specified Container.
/// </summary>
/// <param name="ve_eid">
/// EID of the Container to get the alerts for.
/// </param>
/// <returns>A string containing the alert information.</returns>
///
public string GetAlerts(string[] ve_eid)
{
 string list_result = "";
 try {
 // Instantiate the proxy class
 alertmBinding alertm =
(alertmBinding)binder.InitBinding(typeof(alertmBinding));

 // The main input object.
 get_alerts get_alerts_input = new get_alerts();

 //Set Container list.
 get_alerts_input.eid_list = ve_eid;

 // Get the alert information.
 foreach (eventType al_event in alertm.get_alerts(get_alerts_input)) {
 list_result += "Data: \n";

 // Get the alert data.
 resource_alertType res_data =
(resource_alertType)al_event.data.event_data;
 // Read the alert data.
 list_result += " Class: " + res_data.@class + "\n" +
 // Get counter.
 " Counter: " + res_data.counter + "\n" +
 // Get eid.
 " Eid: " + res_data.eid + "\n" +
 // Get instance.
 " Instance: " + res_data.instance + "\n" +
 // Get type.
 " Type: " + res_data.type.ToString() + "\n" +
 // Get current value.
 " Cur: " + res_data.cur + "\n" +
 // Get hard limit.
 " Hard: " + res_data.hard + "\n" +
 // Get soft limit.
 " Soft: " + res_data.soft + "\n" +
 // Get event name.
 "Name: " + al_event.info.name + "\n" +
 // Get count.
 "Count: " + al_event.count.ToString() + "\n" +
 // Get event category.
 "Category: " + al_event.category + "\n" +
 // Get event message.
 "Message: " +
System.Text.ASCIIEncoding.ASCII.GetString(al_event.info.message) + "\n" +

151

Using SOAP API

 // Get parameters
 "Parameters: ";
 /* Call the helper function to extract the
 * event message parameter values.
 */
 GetParams(al_event.info.parameter, ref list_result);
 }
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
}

/// <summary>
/// Sample function GetParams.
/// This is a helper function that extracts the
/// alert message parameter values.
/// </summary>
/// <param name="parameter">The name of the parameter.</param>
/// <param name="list">
/// Output. Values.
/// </param>
///
void GetParams(infoType[] parameter, ref string list)
{
 string ss = " ";

 foreach (infoType param in parameter) {
 list += ss + "Message: " +
System.Text.ASCIIEncoding.ASCII.GetString(param.message) +
 " Info name: " + param.name + "\n";

 if (param.parameter != null) {
 GetParams(param.parameter, ref list);
 }
 }
}

152

Using SOAP API

Other SOAP Clients and Their Known Issues

Visual Basic .NET

Microsoft .NET WSDL and XML parsers still have many bugs. Some of them prevent
seamless usage of classes generated from VZA.wsdl.

After you add and try to compile the Web Reference from
http://www.swsoft.com/webservices/vza/4.0.0/VZA.wsdl, you'll see the
following compilation errors:

• Keyword does not name a type.

• Reference to a non-shared member requires an object reference.

The first error is caused by name conflicts between the user-defined identifiers and VB
keywords. Usually parsers enclose the identifiers that are identical to VB keywords in square
brackets. Note, however, that this does not work for words like new, which are encountered
in WSDL and XSDs.

In our case, there are problems with the get, stop, set, and select function names. To
solve them, simply double click on each error line in the Task list and enclose the respective
words in square brackets.

The second error is related to the case-insensitive nature of VB -- it confuses the system
field name in the Agent cpu_loadType class with its own System module. To fix this
problem, change the line
<System.Xml.Serialization.XmlIgnoreAttribute()>

to
<Xml.Serialization.XmlIgnoreAttribute()>

Now you should have the code that compiles and works.

The first group of these problems does not exist in the Visual Studio 2005, but you still have
to delete System from Xml.Serialization.XmlIgnoreAttribute() manually.

Visual J# .NET

Unfortunately, the current implementation of Visual J# in Visual Studio .NET 2003, due to its
internal bugs, doesn't work with our WSDL. However, it works seamlessly with the Visual
Studio 2005.

153

Using SOAP API

Apache Axis 1.2 for Java

For this client, we have one tip that reveals hidden knowledge of how to work with
certificates:
System.setProperty("org.apache.axis.components.net.SecureSocketFactory",org.apach
e.axis.components.net.SunFakeTrustSocketFactory");

The code above uses a fake trust manager trusting all certificates. This Java SOAP client also
worked for us.

154

Using SOAP API

Troubleshoting
I'm receiving one of the following errors when trying to connect to the server:
The underlying connection was closed: Unable to connect to the remote server.

Solution: Check your URL, port and routing to your server.
http://schemas.xmlsoap.org/soap/envelope/:Server, Agent responded with error
Details:
2704
Authentication failure - either user name or password is incorrect

Solution: Check your login and password.

Somewhere in the middle of an operation, I get the following error:
http://schemas.xmlsoap.org/soap/envelope/:Server, Agent responded with error
Details:
1004
Error invoking vzctl utility: Container is already running

Solution: Check the state of your Container that is used for the current operation. In the
example above, you try to start a Container and get the error message. This kind of error may
occur when you are starting a Container that is already in the "running" state.

I'm using SOAP with .NET Web Services and I get the following error:

An unhandled exception of type 'System.Net.WebException' occurred in
system.Web.services.dll Additional information: The operation has timed-out.

Solution: .NET SP1 has the default timeout value for the XML Web service calls set to
100000 ms. To avoid this problem, set the appropriate timeout value or set the timeout value
to infinite, as shown in the following example:
MyService service1 = new MyService();

// Infinite timeout.
service1.Timeout = -1;

// The timeout is set to 10 minutes.
service1.Timeout = 10 * 60 * 1000;

Microsoft Visual C# .NET 2005 does not compile SOAP applications in Release
mode.

When attempting to perform a Release build, the sgen.exe throws Out Of Memory
exceptions.

This is a known defect in Microsoft Sgen tool. To fix this problem, try setting the option
Project > Properties > Build > Generate serialization assembly to Off to avoid calling
sgen.exe.

155

Using SOAP API

Advanced Topics

In This Chapter

Agent Configuration ..156
Internal Request Scheduler ...156

Agent Configuration
Agent configuration consists of a set of configuration parameters for each of the Agent
operators. The configuration information is stored in a file as an XML document. On Agent
startup, a corresponding director reads the information from the configuration file and uses it
to configure the operators. As a result, all operators are initialized with the parameters
currently stored in the configuration file.

Because the configuration information is stored as an XML document, it can be edited and
sent to Agent from a client program just like any other request. Agent, receiving the
configuration data, will create a new configuration file replacing the existing file. At the same
time all free-pool operators are released, the busy operators are marked for exiting on
message processing completion, and the new operators are invoked newly configured. The
single operators -- the operators that have no pool and are running at all times -- handle the
configuration message as a regular request and reconfigure themselves on the fly. Agent
configuration information can be retrieved and modified using Agent API.

Internal Request Scheduler
In order to be able to process more requests and decrease the load on the Hardware Node,
PVA agent features a simple internal request scheduler. This section describes the scheduler
internals and how you can take advantage of its functionality in your client applications.

C H A P T E R 6

Advanced Topics

157

Advanced Topics

Message Classification and Priorities

The messages traveling through Agent are divided into four categories (classes), according to
their priorities and processing time. Before discussing these categories, it is necessary to
mention that the priorities of user messages (priorities of the messages coming from the
clients to Agent before their processing by the operator connection) are not the same as the
priorities of the internal Agent messages. The former are translated into the latter by operator
connection, i.e. on their entrance to Agent.

The four categories (classes) of the messages are:

• Normal messages (default).

• Urgent messages.

• Heavy messages.

• Emergency messages.

Normal messages take a moderate time to be processed (up to 5 minutes by default) and
their priority ranges from -999 to +999 to be set by the client and from -1999 to +1999
internally. They may include such operations as stopping a server, getting services states,
and the like.

Urgent messages take very little time to process (no more than a minute) and have the client
priority range from -3000 to -1000 and the internal priority range from -6000 to -2000. They
may include getting a list of environments, retrieving a user information, starting a log, etc.

Heavy messages take significant time to be processed (from 5 minutes to hours or more).
Their priority ranges from 1000 to 3000 if set by the client and from 2000 to 6000 internally.
Among such messages are creating new Virtuozzo Containers, cloning, migration, template
installation, and others.

Emergency messages are for internal Agent use only and consequently have just internal
priorities below -6000.

Internal messages also differ by the credentials of the original user sending them. Root
messages have higher internal priorities than those issued by a regular user.

The table below summarizes the above considerations:

Messages Heavy Normal Urgent

External priorities 1000 to 3000 -999 to 999 -3000 to 1000

Root internal priorities 2000 to 4000 -1999 to -1 -6000 to -4000

User internal priorities 4000 to 6000 1 to 1999 -4000 to -2000

158

Advanced Topics

Pool and Single Operators

For on-demand requests, the director provides pools of operators that are being forked and
cached as necessary. For example, the server management operator can simultaneously
serve up to 4 Virtuozzo Container creation processes, up to 10 Container stops, and up to
20 Container configuration fetches by default. It means that the director forks another server
management operator if all of the existing operators are busy. This works up to a certain limit,
after which the next incoming message is queued and its processing begins when one of the
existing operators becomes available.

Pools are strictly concerned with a particular operator and don't intersect in any way. As an
example, the computer management operator pool never interferes with the server
management pool. Any pool consists of two sets of operators. One set is comprised of the
busy operators and the other contains the operators that are currently available. A new
incoming message is sent to one of the available operators. The status of the operator is
immediately switched from "available" to "busy". Upon completion, the status of the operator
is switched to "available" unless the total number of operators in the pool has already
reached the pool limit, in which case the operator instance is destroyed.

Static limits of pools (limits that are not changed with time unless Agent is reconfigured)
consist of three values - one for each message class. The "heavy" limit allows no more heavy
messages to be simultaneously run than the number represented by its value. The "total" limit
does the same thing for normal plus heavy messages. And the "urgent" limit restricts the
number of urgent + normal + heavy messages. Emergency messages are not limited. All this
means that messages of all types are considered together and if a pool is partially busy with
heavy messages, the number of normal messages to run is reduced, too. Operators for
urgent messages are invoked even if the total limit is reached - that will only make the pool
shrink back after the completion of any requests to a value not greater than the total limit.

The other type of operators are the single operators. These operators run at all times. Unlike
the pool operators, they never fork additional processes. This type of operators include the
periodic collectors (the operators that collect the data on a periodic basis), the event
reporters (the operators that notify the client of the important system events), and some
others.

159

Advanced Topics

Dynamic Limits

In an attempt to provide scalability depending on the system load, pool limits are dynamically
changed. Their increase and decrease depend on the completion of processing a request. If
the request is killed by the timeout, the system is considered to be too loaded for this many
operations of the kind to be performed in parallel, and so the dynamic pool limit is decreased
by 1 down to the minimum of 1. If the operation was successful, the dynamic pool limit is
increased by the 1/comeback_ratio value up to the corresponding static limit. It allows a
faster reaction to heavy load peaks and slower recover. Dynamic limits exist for each of the
static limits: normal, heavy, and urgent. Decreasing a dynamic limit happens not only for the
limits of the given message class (judging by the message whose processing was terminated
for the timeout), but also for heavier classes of messages. It means that the timeout of an
urgent message will lead to all of the three dynamic limits being decremented. Incrementing a
dynamic limit would also affects all the limits of lighter classes. Thus, the completion of a
heavy message allows to increment the dynamic limits for all of the message classes. The
incremental values are proportional to the corresponding static pool limits. Here is an
example.

Suppose we have the following pools: 4 for heavy, 10 for normal and 20 for urgent messages
and the comeback_ratio equalling 4. A successful completion of an urgent messages will
result in the following increases.

Urgent Dynamic Limit = +1/comeback_ratio.

Normal Dynamic Limit = +1/comeback_ratio/(20/10).

Heavy Dynamic Limit = +1/comeback_ratio/(20/4)

This allows heavier limits not to stick near their minimums if messages of their class are not
coming.

Queue

If a particular pool limit has been reached and the message at hand cannot be served
immediately, it is placed in the queue. The queue is a priority-based collection. Higher-priority
messages are placed before the lower ones. So, a queue overflow may lead to dropping
some of the already queued messages that have a lower priority than those coming now.
With the corresponding operators becoming available, the messages are unqueued and sent
for processing.

The queue has the same principles not only for on-demand operators with their pools, but
everywhere else (even for internal PVA agent messages).

160

Advanced Topics

Timeouts

Timeouts are set for every operation performed by the PVA agent on-demand operators.
They are necessary for preventing system hangs and overloading. Different timeouts are set
for each class of messages. This is achieved by introducing timeout limits.

A timeout limit is the maximal timeout value that can be set for a particular message class. By
default, the timeouts are set at 5 minutes for normal messages, 1 minute for urgent
messages, and 100 hours for heavy messages. All these values are configurable.

When the director receives an XML request message from a client, it sets the default timeout
value for it by populating the timeout_limit attribute of the packet element (the root
element of every message). This value specifies the maximum timeout allowed for this
message class. Upon receiving the message, the operator verifies the specified timeout
value. If it is satisfied with it, it proceeds with the processing of the request. If the value is
greater than the timeout limit for the given message class, the operator returns the message
to the director changing the value to the one it finds appropriate. The director then
recalculates the priority of the message, places it into the corresponding message class, and
reschedules it.

Appendix A: Performance Counters

Performance Classes

There are two groups of performance classes: one is for monitoring Virtuozzo Containers,
and the other is for monitoring the host server (Hardware Node). Both groups are listed in the
following table.

Class ID Resource Type Class Instances

Container classes

counters_vz_cpu CPU N/A

counters_vz_ubc UBC (User Bean Counters). N/A

counters_vz_net Container network. Use vznetstat command-line utility
to obtain a list of instances. The
Net.Class column will contain the
available instances. The rows with
CTID = 0 (Container 0 or Hardware
Node) are not applicable.

counters_vz_quota Disk quota. N/A

counters_vz_loadavg Load average. N/A

counters_vz_system System info. N/A

counters_vz_slm SLM N/A

counters_vz_memory Memory N/A

counters_vz_hw_net Hardware Node network. Use vznetstat command-line utility
to obtain a list of instances. The
Net.Class column will contain the
available instances. Only the rows
with CTID=0 (Container 0 or
Hardware Node) must be looked at.

Hardware Node classes

counters_cpu CPU N/A

counters_disk Disk The name of the hard disk device.

counters_memory Memory N/A

counters_net Network The name of the network interface.

counters_loadavg CPU N/A

counters_system System info. N/A

Performance Counters

C H A P T E R 7

Appendix A: Performance Counters

162

Appendix A: Performance Counters

Note: UBC failcounters are not supported in the current version of Parallels Agent.

The tables below contain lists of performance counters by their parent class. The table columns are:

Counter ID Counter ID. The IDs are used in Agent calls as input/output parameters.

Value The data type of the counter value(s).

Type Counter type. A performance counter may be one of the following types:

• Periodic counter (type 0). Contains the minimum, maximum,
and average values for the given time period.

• Incremental counter (type 1). The value of an incremental
counter is always higher or equals to the previous value. A
good example is a network counter that counts the number
of bytes the interface has sent or received. The minimum,
maximum, and average values are the same and represent
the difference between the current value and the value from
the previous report.

• Cumulative counter (type 2). The minimum, maximum, and
average values are the same and represent the total
accumulated value since the server was started. On server
restart, counter values are reset to zero.

Units Units of measure (bytes, percent, seconds, pieces, etc.)

Description Counter description.

CPU counters (counters_vz_cpu class)

Counter ID Value Type Units Description

counter_cpu_system int 2 seconds System CPU time.

counter_cpu_user int 2 seconds User CPU time.

counter_cpu_idle int 2 seconds Idle CPU time.

counter_cpu_nice int 2 seconds Nice CPU time.

counter_cpu_starvation int 2 seconds 'Starvation' CPU time (i.e.
the difference between the
guaranteed and used CPU
time).

counter_cpu_system_states int 0 percent System CPU time in
percent.

counter_cpu_user_states int 0 percent User CPU time in percent.

counter_cpu_idle_states int 0 percent Idle CPU time in percent.

counter_cpu_nice_states int 0 percent Nice CPU time in percent.

counter_cpu_starvation_states int 0 percent Starvation CPU time in
percent.

counter_cpu_used float 0 percent Total CPU usage in
percent.

163

Appendix A: Performance Counters

counter_cpu_share_used float 0 percent The real CPU usage of the
Container against the CPU
limit set for this Container.

counter_cpu_limit float 0 percent The share of the CPU time
the Container may never
exceed.

UBC counters (counters_vz_ubc class)

Counter ID Value Type Units Description

numproc int 0 pcs Number of processes and
kernel-level threads.

numtcpsock int 0 pcs Number of TCP sockets.

numothersock int 0 pcs Number of non-TCP
sockets.

vmguarpages int 0 4K-pages Memory allocation
guarantee.

kmemsize int 0 bytes Size of non-swappable
kernel memory.

tcpsndbuf int 0 bytes Total size of 'send' buffers
for TCP sockets.

tcprcvbuf int 0 bytes Total size of 'receive'
buffers for TCP sockets

othersockbuf int 0 bytes Total size of UNIX-domain
socket buffers, UDP, and
other datagram protocols
'send' buffers.

dgramrcvbuf int 0 bytes Total size of 'receive'
buffers of UDP and other
datagram protocols.

oomguarpages int 0 4K-pages Out-of-memory guarantee.

privvmpages int 0 4K-pages Size of the Container
private memory.

lockedpages int 0 4K-pages Memory not allowed to be
swapped out.

shmpages int 0 4K-pages Size of the shared
memory.

physpages int 0 4K-pages Total size of RAM used by
Container processes.

numfile int 0 pcs Number of open files.

numflock int 0 pcs Number of file locks.

numpty int 0 pcs Number of pseudo-
terminals.

numsiginfo int 0 pcs Number of 'siginfo'
structures.

164

Appendix A: Performance Counters

dcachesize int 0 bytes Total size of 'dentry' and
'inode' structures locked in
memory.

numiptent int 0 pcs Number of IP packet
filtering entries.

Network counters (counters_vz_net class)

Counter ID Value Type Units Description

counter_net_incoming_bytes int 2 bytes The amount of incoming
network traffic in bytes.

counter_net_incoming_packets int 2 pcs The amount of incoming
network traffic in packets.

counter_net_outgoing_bytes int 2 bytes The amount of outgoing
network traffic in bytes.

counter_net_outgoing_packets int 2 pcs The amount of outgoing
network traffic in packets.

Disk quota counters (counters_vz_quota class)

Counter ID Value Type Units Description

diskspace int 0 1K-
blocks

The total size of disk
consumed by the
Container.

diskspace_hard int 0 1K-
blocks

Disk space hard limit.

diskspace_soft int 0 1K-
blocks

Disk space soft limit.

diskinodes int 0 inodes The total number of disk
inodes (files, directories,
symbolic links).

diskinodes_soft int 0 inodes The total number of disk
inodes (files, directories,
symbolic links). The
Container is allowed to
temporarily exceed the soft
limit during the grace
period defined by the
'quotatime' parameter.

diskinodes_hard int 0 inodes The total number of disk
inodes (files, directories,
symbolic links). The
Container can never
exceed this limit.

165

Appendix A: Performance Counters

quotaugidlimit int 0 pcs The number of user/group
IDs allowed for Container
internal disk quota. If set to
0, the UID/GID quota will
not be enabled. You can
configure the UID/GID
quota for Containers with
the disabled UID/GID
quota only if they are
stopped.

quotaugidlimit_hard int 0 pcs The maximal number of
user/group IDs allowed for
Container internal disk
quota.

counter_disk_used int 0 bytes The amount of disk space
in use (in bytes).

counter_disk_share_used float 0 percent The ratio of the real disk
space consumption by the
Container against the disk
space limit set for this
Container.

counter_disk_limit int 0 bytes The total amount of disk
space that can be
consumed by the
Container.

Load average counters (counters_vz_loadavg class)

Counter ID Value Type Units Description

counter_loadavg_l1 float 0 pcs The average number of
processes in the kernel run
queue for the last minute.

counter_loadavg_l2 float 0 pcs The average number of
processes in the kernel run
queue for the last 5
minutes.

counter_loadavg_l3 float 0 pcs The average number of
processes in the kernel run
queue for the last 15
minutes.

System info counters (counters_vz_system class)

Counter ID Value Type Units Description

counter_system_users int 0 number Number of users.

counter_system_uptime int 1 seconds The time elapsed since the
last server startup.

SLM counters (counters_vz_slm class)

166

Appendix A: Performance Counters

Counter ID Value Type Units Description

slmmemorylimit int 0 bytes The total amount of
memory that can be
consumed by the
Container.

Memory counters (counters_vz_memory class)

Counter ID Value Type Units Description

counter_memory_used int 0 bytes The total amount of
memory used by the
Container.

counter_memory_share_used float 0 percent The ratio of the real
physical memory usage of
the Container against the
memory limit set for this
Container, in percent.

counter_memory_limit int 0 bytes The total amount of
memory that can be
allocated to the Container.

Network counters (counters_vz_hw_net class)

Counter ID Value Type Units Description

counter_net_incoming_bytes int 2 bytes The amount of incoming
network traffic in bytes.

ounter_net_incoming_packets int 2 pcs The amount of incoming
network traffic in packets.

counter_net_outgoing_bytes int 2 bytes The amount of outgoing
network traffic in bytes.

counter_net_outgoing_packets int 2 pcs The amount of outgoing
network traffic in packets.

Hardware Node CPU counters (counters_cpu class)

Counter ID Value Type Units Description

counter_cpu_system int 2 seconds System CPU time.

counter_cpu_user int 2 seconds User CPU time.

counter_cpu_nice int 2 seconds Nice CPU time.

counter_cpu_idle int 2 seconds Idle CPU time.

counter_cpu_system_states int 0 percent System CPU time in
percent.

counter_cpu_user_states int 0 percent User CPU time percent.

counter_cpu_nice_states int 0 percent Nice CPU time in percent.

167

Appendix A: Performance Counters

counter_cpu_idle_states int 0 percent Idle CPU time in percent.

counter_cpu_used float 0 percent CPU usage in percent.

counter_cpu_share_used float 0 percent The ratio of CPU time
consumed by the server to
current limit.

counter_cpu_limit float 0 percent CPU limit of the share the
server will get.

Hardware Node disk counters (counters_disk class)

Counter ID Value Type Units Description

counter_disk_space_used int 0 1K-
blocks

Disk space used.

counter_disk_space_free int 0 1K-
blocks

Disk space free.

counter_disk_inodes_used int 0 inodes Disk inodes used.

counter_disk_inodes_free int 0 inodes Disk inodes free.

counter_disk_used int 0 bytes Disk space used in bytes.

counter_disk_share_used float 0 percent The ratio of used disk
space to current limit.

counter_disk_limit int 0 bytes Total disk space available
for the server.

Hardware Node memory counters (counters_memory class)

Counter ID Value Type Units Description

counter_memory_mem_used int 0 bytes Amount of used memory.

counter_memory_mem_free int 0 bytes Amount of available free
memory.

counter_memory_swap_used int 0 bytes Amount of used swap.

counter_memory_swap_free int 0 bytes Amount of available free
swap space.

counter_memory_used int 0 bytes Memory used by the
server.

counter_memory_share_used float 0 percent The ratio of used memory
to current limit.

counter_memory_limit int 0 bytes Total memory available for
the server.

Hardware Node network counters (counters_net class)

Counter ID Value Type Units Description

counter_net_incoming_bytes int 2 bytes Amount of incoming
network traffic in bytes.

168

Appendix A: Performance Counters

counter_net_incoming_packets int 2 pcs Amount of incoming
network traffic in packets.

counter_net_outgoing_bytes int 2 bytes Amount of outgoing
network traffic in bytes.

counter_net_outgoing_packets int 2 pcs Amount of outgoing
network traffic in packets.

Hardware Node load average counters (counters_loadavg class)

Counter ID Value Type Units Description

counter_loadavg_l1 float 0 pcs Average number of
processes in the system
run queue of kernel for the
last 1 minute.

counter_loadavg_l2 float 0 pcs Average number of
processes in the system
run queue of kernel for the
last 5 minutes.

counter_loadavg_l3 float 0 pcs Average number of
processes in the system
run queue of kernel for the
last 15 minutes.

Hardware Node system info counters (counters_system class)

Counter ID Value Type Units Description

counter_system_uptime int 1 seconds Processor uptime.

counter_system_users int 0 number Number of users.

Index

A
About This Guide - 7
Advanced Topics - 156
Agent Architecture - 14
Agent Configuration - 156
Agent Messages - 22
Apache Axis 1.2 for Java - 153
Appendix A

Performance Counters - 161
Authentication Concepts - 17
Authorization - 18

B
Backing up a Container - 132
Backup Operations - 132
Base64-encoded Values - 113

C
Certificates Policy Preparation - 95
Classes, Instances, Counters - 78, 146
Cloning a Virtuozzo Container - 127
Complete Program Code - 104
Configuring a Container - 121
Configuring a Virtuozzo Container - 71
Connecting to Agent - 36
Connection URL - 96
Connectivity - 16
Container and Virtual Machine Templates - 55
Creating a Container - 114
Creating a Simple Client Application - 35, 91
Creating a Virtual Machine - 75
Creating a Virtuozzo Container - 68
Creating and Configuring Virtuozzo

Containers - 63
Creating and Managing Parallels Virtual

Machines - 74

D
Destroying a Container - 118
Destroying a Virtuozzo Container - 74

Destroying Virtual Machine - 77
Developing Agent SOAP Clients - 110
Dynamic Limits - 159

E
Elements with no Content - 112
Error Handling - 34
Events and Alerts - 84

F
Feedback - 7

G
Generating Client Code from WSDL - 91
Getting a List of OS Templates - 64
Getting a Performance Report - 79, 147
Getting Container Configuration Information -

120
Getting Container Information From a Backup

- 144
Getting Resource Library Template List - 61
Getting Sample Configuration List - 56
Getting Started - 8
Getting Virtual Machine Template List - 58

I
Internal Request Scheduler - 156
Introduction - 90

K
Key Features - 91

L
Limitations - 91
Listing Backups - 136
Location of XSD and WSDL - 13
Logging In - 38, 50
Logging in and Creating a Session - 99
Logging In To PVA or PPP - 52
Login and Session Management - 46

Index

Index

M
Managing Containers - 113
Message Body - 32
Message Classification and Priorities - 157
Message Header - 27
Migrating a Container to a Different Host -

129
Modifying Container Name - 124
Modifying DNS Server Assignment - 126
Modifying Hostname - 123
Modifying IP Address - 122
Modifying QoS Settings - 125
Monitoring Alerts - 149
Monitoring Multiple Environments - 83

O
Optional Elements - 111
Other SOAP Clients and Their Known Issues

- 152
Overview - 90

P
Passing parameters explicitly - 72
Performance Monitor - 78, 146
Pool and Single Operators - 158
Populating Container Configuration Structure

- 66
Preface - 7
PVA Agent API - 10
PVA Agent Overview - 9

Q
Queue - 159

R
Realms - 18
Receiving Periodic Reports - 81
Request Routing - 87
Restarting a Virtual Environment - 42
Restoring a Container - 140
Retrieving a List of Containers - 101
Retrieving Container Configuration - 70
Retrieving Realm Information - 47
Retrieving Virtual Environment List - 41
Retrieving Virtual Machine Information - 77

S
Sessions - 51
SOAP API Reference - 110
SOAP Object Binding - 97
Starting, Stopping, Restarting - 12
Starting, Stopping, Restarting a Container -

117
Step 1

Choosing a Development Project - 92
Step 2

Generating Proxy Classes From WSDL -
92

Step 3
Fixing Get/Set Method Name Conflict - 93

Step 4
Main Program File - 95

Step 5
Running the Sample - 103

Summary - 43
Supported Products and Installation - 11
Suspending and Resuming a Container - 119

T
Terminology - 19
The Complete Program Code - 44
The Null-Terminating Character - 33
Timeouts - 113, 160
Troubleshoting - 154

U
Using SOAP API - 90
Using values from a sample configuration - 73
Using XML API - 20

V
Visual Basic .NET - 152
Visual J# .NET - 152

X
XML API Basics - 20
XML Message Examples - 25
XML Message Specifications - 23
XML Schema - 21

	Preface
	About This Guide
	Feedback

	Getting Started
	PVA Agent Overview
	PVA Agent API
	Supported Products and Installation
	Starting, Stopping, Restarting
	Location of XSD and WSDL
	Agent Architecture
	Connectivity
	Authentication Concepts
	Realms
	Authorization

	Terminology

	Using XML API
	XML API Basics
	XML Schema
	Agent Messages
	XML Message Specifications
	XML Message Examples
	Message Header
	Message Body
	The Null-Terminating Character

	Error Handling

	Creating a Simple Client Application
	Connecting to Agent
	Logging In
	Retrieving Virtual Environment List
	Restarting a Virtual Environment
	Summary
	The Complete Program Code

	Login and Session Management
	Retrieving Realm Information
	Logging In
	Sessions
	Logging In To PVA or PPP

	Container and Virtual Machine Templates
	Getting Sample Configuration List
	Getting Virtual Machine Template List
	Getting Resource Library Template List

	Creating and Configuring Virtuozzo Containers
	Getting a List of OS Templates
	Populating Container Configuration Structure
	Creating a Virtuozzo Container
	Retrieving Container Configuration
	Configuring a Virtuozzo Container
	Passing parameters explicitly
	Using values from a sample configuration

	Destroying a Virtuozzo Container

	Creating and Managing Parallels Virtual Machines
	Creating a Virtual Machine
	Retrieving Virtual Machine Information
	Destroying Virtual Machine

	Performance Monitor
	Classes, Instances, Counters
	Getting a Performance Report
	Receiving Periodic Reports
	Monitoring Multiple Environments

	Events and Alerts
	Request Routing

	Using SOAP API
	Introduction
	Overview
	Key Features
	Limitations
	Generating Client Code from WSDL

	Creating a Simple Client Application
	Step 1: Choosing a Development Project
	Step 2: Generating Proxy Classes From WSDL
	Step 3: Fixing Get/Set Method Name Conflict
	Step 4: Main Program File
	Certificates Policy Preparation
	Connection URL
	SOAP Object Binding
	Logging in and Creating a Session
	Retrieving a List of Containers

	Step 5: Running the Sample
	Complete Program Code

	Developing Agent SOAP Clients
	SOAP API Reference
	Optional Elements
	Elements with no Content
	Base64-encoded Values
	Timeouts

	Managing Containers
	Creating a Container
	Starting, Stopping, Restarting a Container
	Destroying a Container
	Suspending and Resuming a Container
	Getting Container Configuration Information
	Configuring a Container
	Modifying IP Address
	Modifying Hostname
	Modifying Container Name
	Modifying QoS Settings
	Modifying DNS Server Assignment

	Cloning a Virtuozzo Container
	Migrating a Container to a Different Host
	Backup Operations
	Backing up a Container
	Listing Backups
	Restoring a Container
	Getting Container Information From a Backup

	Performance Monitor
	Classes, Instances, Counters
	Getting a Performance Report

	Monitoring Alerts

	Other SOAP Clients and Their Known Issues
	Visual Basic .NET
	Visual J# .NET
	Apache Axis 1.2 for Java

	Troubleshoting

	Advanced Topics
	Agent Configuration
	Internal Request Scheduler
	Message Classification and Priorities
	Pool and Single Operators
	Dynamic Limits
	Queue
	Timeouts

	Appendix A: Performance Counters
	Index

