

PVA Agent
SOAP API Tutorial

1.0

Copyright © 1999-2009 Parallels, Inc.

ISBN: N/A
SWsoft
13755 Sunrise Valley Drive
Suite 325
Herndon, VA 20171
USA
Tel: +1 (703) 815 5670
Fax: +1 (703) 815 5675

© 1999-2007 SWsoft. All rights reserved.
Distribution of this work or derivative of this work in any form is prohibited unless prior written permission is
obtained from the copyright holder.
Virtuozzo, Plesk, HSPcomplete, and corresponding logos are trademarks of SWsoft.
Virtuozzo is a patented virtualization technology protected by U.S. patents 7,099,948; 7,076,633; 6,961,868.
Patents pending in the U.S.
Plesk and HSPcomplete are patented hosting technologies protected by U.S. patents 7,099,948; 7,076,633.
Patents pending in the U.S.
Intel, Pentium, and Celeron are registered trademarks of Intel Corporation.
IBM DB2 is a registered trademark of International Business Machines Corp.
MegaRAID is a registered trademark of American Megatrends, Inc.
PowerEdge is a trademark of Dell Computer Corporation.

 3

Contents

Preface 5
Documentation Conventions...5

Typographical Conventions...5
Shell Prompts in Command Examples ..6
General Conventions ...6

Feedback...6

Introduction 7
What is Parallels Agent?...7
Agent SOAP API..8
Development Platforms ..8
Installation ..9

Writing Your First Program 10
Choosing a Development Project..10
Generating Proxy Classes From WSDL ...11

Errors and Resolution ..12
Creating a Simple Client Program ..13

Main Program File...13
Certificates Policy Preparation ..14
Instantiating Proxy Classes..14
Connection URL..18
Logging in and Creating a Session ..18
Retrieving a List of Virtual Environments ..20
Complete Program Code ...22

Managing Virtual Environments 27
Creating a Virtual Environment...28
Getting Server ID From Name..32
Starting, Stopping, Restarting a Virtual Environment ..33
Destroying a Virtual Environment..34
Suspending and Resuming a Virtual Environment ...35
Getting Virtual Environment Configuration Information ...36
Configuring a Virtual Environment ..37

Modifying IP Address ...37
Modifying Hostname...39
Modifying Virtual Environment Name ...40
Modifying QoS Settings ..41
Modifying DNS Server Assignment..42

Cloning a Virtual Environment...43
Migrating a Virtual Environment to a Different Host...45
Monitoring Performance...48

Classes, Instances, Counters..49
Getting a Performance Report ...50

Monitoring Alerts ...54
Managing Files ...56

Request Routing ..57

 Contents 4

Listing Files ...59
Uploading a File ..61
Downloading a File ...62

Package Management ...63

Index 65

 5

C H A P T E R 1

Preface

In This Chapter
Documentation Conventions... 5
Feedback ... 6

Documentation Conventions
Before you start using this guide, it is important to understand the documentation conventions
used in it. For information on specialized terms used in the documentation, see the Glossary at
the end of this document.

Typographical Conventions
The following kinds of formatting in the text identify special information.

Formatting
convention

Type of Information Example

Triangular
Bullet()

Step-by-step procedures. You can
follow the instructions below to
complete a specific task.

To create a VE:

Special Bold Items you must select, such as menu
options, command buttons, or items in
a list.

Go to the Resources tab.

 Titles of chapters, sections, and
subsections.

Read the Basic Administration chapter.

Italics Used to emphasize the importance of a
point, to introduce a term or to
designate a command line placeholder,
which is to be replaced with a real
name or value.

These are the so-called EZ templates.

To destroy a VE, type vzctl destroy
veid.

Monospace The names of commands, files, and
directories.

Use vzctl start to start a VE.

Preformatted On-screen computer output in your
command-line sessions; source code in
XML, C++, or other programming
languages.

Saved parameters for VE 101

Monospace
Bold

What you type, contrasted with on-
screen computer output.

rpm –V virtuozzo-release

CAPITALS Names of keys on the keyboard. SHIFT, CTRL, ALT

 Preface 6

KEY+KEY Key combinations for which the user
must press and hold down one key and
then press another.

CTRL+P, ALT+F4

Shell Prompts in Command Examples
Command line examples throughout this guide presume that you are using the Bourne-again
shell (bash). Whenever a command can be run as a regular user, we will display it with a dollar
sign prompt. When a command is meant to be run as root, we will display it with a hash mark
prompt:

Bourne-again shell prompt $

Bourne-again shell root prompt #

General Conventions
Be aware of the following conventions used in this book.

 Chapters in this guide are divided into sections, which, in turn, are subdivided into
subsections. For example, Documentation Conventions is a section, and General Conventions
is a subsection.

 When following steps or using examples, be sure to type double-quotes ("), left single-
quotes (`), and right single-quotes (') exactly as shown.

 The key referred to as RETURN is labeled ENTER on some keyboards.

The root path usually includes the /bin, /sbin, /usr/bin and /usr/sbin directories, so
the steps in this book show the commands in these directories without absolute path names.
Steps that use commands in other, less common, directories show the absolute paths in the
examples.

Feedback
If you spot a typo in this guide, or if you have thought of a way to make this guide better, we
would love to hear from you!

If you have a suggestion for improving the documentation (or any other relevant comments), try
to be as specific as possible when formulating it. If you have found an error, please include the
chapter/section/subsection name and some of the surrounding text so we can find it easily.

Please submit a report by e-mail to userdocs@swsoft.com
(http://forum.swsoft.com/forumdisplay.php?s=&forumid=239).

http://forum.swsoft.com/forumdisplay.php?s=&forumid=239

 7

C H A P T E R 2

Introduction

In This Chapter
What is Parallels Agent? ... 7
Agent SOAP API .. 8
Development Platforms... 8
Installation... 9

What is Parallels Agent?
Parallels Agent is a server-side software that allows client applications to connect to and
manage virtual environments over network. Agent can be used for managing, monitoring, and
tuning the physical servers and virtual environments.

The following list describes the most common tasks that can be performed on virtual
environments through Agent:

 Creating and destroying a virtual environment.
 Starting, stopping, restarting.
 Migrating, cloning, moving to a different location.
 Backing up.
 Getting the status and configuration information.
 Modifying configuration parameters.
 Obtaining current statistical data and resource usage information.
 Setting up Parallels Virtual Networks.
 Managing Parallels Security Infrastructure.
 Installing, updating, removing Parallels templates.

The following tasks can be performed on physical servers and virtual environments:

 Shutting down and restarting.
 Managing configuration parameters.
 Managing operating system services.
 Managing devices.
 Managing files and directories.
 Managing users and groups.
 Retrieving disk, network and other system information.
 Monitoring resource consumption.
 Receiving notifications about critical events, directly or via e-mail.

 Introduction 8

Agent SOAP API
Agent SOAP API is based on open standards like SOAP and WSDL. With SOAP API, you
build your client applications using one of the third-party development tools that can generate
client code from WSDL specifications. The code generated from WSDL documents is a set of
objects in your application's native programming language. You work with data structures using
object properties and you make API calls by invoking object methods.

The SOAP API shares the XML schema with the Agent XML API, so the basic format of the
input and output data is the same in both APIs. Parallels Agent Programmer's Guide, Using XML
API chapter provides general information on the Agent XML schema, the detailed description of
the XML API request and response packets, and other important information. Parallels Agent
XML Programmer's Reference provides a complete XML API reference. When working with
SOAP API, use the XML API reference material to find the descriptions of the calls, their input
and output parameters, and XML code examples.

Development Platforms
In this tutorial we will write our sample code in C# using Microsoft Visual Studio .NET 2005
and Microsoft .NET Framework 2.0.

Agent SOAP API has also been successfully tested with Microsoft Visual Studio .NET 2003
and Microsoft .NET Framework 1.1

 Introduction 9

Installation
Server side

Agent software is installed, by default, on the Slave physical server alongside with the Power
Panel subcomponent. If you disable Power Panel installation, the SOAP agent part is not
installed either.

When Agent is installed on your physical server for the first time, you will need to know the
password of your system administrator (such as root on Linux or Administrator on
Windows) in order to log in to it from your client program. The system administrator is by
default granted all access rights in Agent, which means that the user can execute any of the
available Agent API calls and access any of the <virtual-server>s hosted by the physical server.
You can add more users with specific access rights later using Parallels Infrastructure Manager
or programmatically through Agent.

To verify that Agent is installed and running properly, do the following:

 On Linux, log in to your physical server and execute the following command:
vzagent_ctl status

If Agent is running, the output should look similar to the following:
vzagent (pid 31615 29644 25012 22861 8362 7073 7046 7036 7035 7029 7028 7026
7025 7023 7021 7019 7018 7017 7016 7013 7012 7011 7010 7009 7008 7007 7006
7004 7003 7002 7001 7000 6999 6998 6997 6996 6995 6994 6993 6992 6991 6990
6989 6988 6987 6986 6985 6984 6632) is running...

If Agent is stopped, the output will look like this:
vzagent is stopped

If something is wrong with Agent, the output may contain additional messages describing the
problem. In such a case, try restarting Agent using the following command:
vzagent_ctl restart

To start or stop Agent, use the following commands respectively:
vzagent_ctl start
vzagent_ctl stop

On Windows, Agent runs as a Windows service. You can manipulate it by going to the
Services console which is located in the Control Panel / Administrative Tools folder, and
selecting the VZAgent service from the list.

Client side

Your will need Microsoft Visual Studio .NET and Microsoft .NET Framework installed on your
development machine. No additional client software is required.

 10

C H A P T E R 3

Writing Your First Program

In This Chapter
Choosing a Development Project.. 10
Generating Proxy Classes From WSDL ... 11
Creating a Simple Client Program .. 13

Choosing a Development Project
You can choose any type of Visual Studio .NET C# project for your application. Your choice
depends on your application requirements only. For our sample program, let's select C#
Windows console application project and call it VzSimpleClient.

1 In Microsoft Visual Studio .NET, select File > New > Project. The New Project windows
opens.

2 In the Project Types tree, select Visual C# > Windows and then select Console Application in
the Templates pane.

3 Enter VzSimpleClient as the name for your project and choose a location for your
project files and click OK.

Note: If you are using Microsoft Visual Studio .NET 2005 and if your default project files
location is set to C:\Documents and Settings\user_name\My
Documents\Visual Studio 2005\Projects\project_name\.., you will have
to choose a location with a shorter path. The reason is that there's an issue with Visual Studio
2005 C# method generation from WSDL (we will discuss the issue in detail in the Generating
Stubs From WSDL section). As a solution, we will create a batch file that will fix the problem.
The file will be placed into and run from the directory that contains the Web References
folder (usually ..\Projects\project_name\project_name\), but because of the 256
character command line limit imposed by the Microsoft NTFS file system, the full pathname
(including the path and the file name) must fit within this limit or the C# compiler will not be
able to run the batch file.

 Writing Your First Program 11

Generating Proxy Classes From
WSDL

1 In the Solution Explorer pane, select the VzSimpleClient project.

2 On the Project menu, select Add Web Reference. The Add Web Reference window opens.

In the URL field, type (or copy and paste) this URL:
http://www.swsoft.com/webservices/vza/4.0.0/VZA.wsdl

1 Press the Go button next to the URL field. Visual Studio will try to connect to the SWsoft
web site and retrieve the Agent web service information. After a few seconds (depends on
the connection speed), you should see a single entry in the Web services found at this URL
list box: 1 Service Found: - VZA

2 Type VZA in the Web reference name field replacing the default value (in general, you can
choose any name that you like). This name will be used in your code as the C# namespace
to access the selected service.

Press the Add Reference button. This will generate proxy classes from Agent WSDL
specifications and will add them to the project. A new item VZA will appear in the Solution
Explorer in the Web References folder. You can now start using generated classes to access
Agent services.

 Writing Your First Program 12

Errors and Resolution
If you are using Microsoft Visual Studio 2005, you may get errors when generating client code
from WSDL. The errors may look similar to the following:
error CS0542: 'set_xxx': member names cannot be the same as their enclosing
type

The error is produced by the C# compiler when generating the code for the XML schema
similar to the following example:
<xs:element name="set_xxx">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="xxx" type="XXXtype" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Note that the function set_xxx has a parameter xxx. Microsoft Visual C# .NET will generate
the following code:
public partial class set_xxx {
 private string xxxField;

 public string xxx {
 get {
 return this.xxxField;
 }
 set {
 this.xxxField = value;
 }
 }
}

As you can see, the function name is the same as the class name. This causes the compiler to
produce those errors.

Resolution:

Create a batch file wsdlc.bat containing the following code and save it in your project
directory:
setlocal
set WS=%1Web References\VZA
copy "%WS%\Reference.map" "%WS%\Reference.discomap"
"C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\wsdl.exe" /l:CS
/fields /out:"%WS%\Reference.cs" /n:%2.VZA "%WS%\Reference.discomap"
del "%WS%\Reference.discomap"
endlocal
exit /b 0

The file generates the new Reference.cs file (the file containing the proxy classes) fixing
the problem described above by generating the regular properties instead of C#-style get/set
fields. DO NOT try to run the file! It will by run automatically after we complete the rest of the
steps.

In the Microsoft Visual C# .NET development environment, select Project > Properties menu
item. Select Build Events option in the left pane. Now in the right pane, modify the parameter
Pre-build Event Command Line to contain the following line:
$(ProjectDir)wsdlc.bat $(ProjectDir) $(ProjectName)

 Writing Your First Program 13

Note: Make sure that the Reference.cs file is not currently opened in the IDE, otherwise
the compiler will use it instead of the new file that will be generated by our batch file.

Select the Build > Build Solution menu option to build your solution. This will take longer than
usual because the wsdlc.bat file that we created will re-generate the proxy classes.

After the build is completed, the Reference.cs file will contain the newly generated stubs.
At this point you can remove or comment out the entry that used in the Project > Properties >
Pre-build Event Command Line option. If you do not, the stubs will be re-generated every time
you build your solution.

If you decide to update the client code from WSDL located on our Web server again, make sure
that you repeat the steps described here again.

The request describing this defect was submitted to Microsoft: #FDBK46565

Creating a Simple Client Program
In this section, we will create a simple Agent client application that will log the specified user in
and will retrieve the list of the virtual environments from the physical server. The complete
program code is included in the Complete Program Code section.

Main Program File
At this point, you should see the Program.cs file opened in your Visual Studio IDE. This is
the main file where we will write our program code. The file should contain the following code:
using System;
using System.IO;
using System.Collections.Generic;
using System.Text;
using VzSimpleClient.VZA;

namespace VzSimpleClient
{
 class Program
 {
 static void Main(string[] args)
 {
 // Wait for the user to press a key, then exit.
 Console.Read()
 }
 }
}

We've added the necessary using directives and we've also added the Console.Read()
line to the Main() function to keep the console window open until a keyboard key is pressed.

 Writing Your First Program 14

Certificates Policy Preparation
Since Agent SOAP uses HTTPS as a transport protocol, we have to deal with the certificate
issues. For the purpose of this example, we're going to use the "trust all certificates" policy.
We'll create a class that implements such a policy for us and passes it to the certificate policy
manager during logon.
///<summary>
/// Sample class TrustAllCertificatePolicy.
/// Used as a certificate policy provider.
/// Allows all certificates.
///</summary>
public class TrustAllCertificatePolicy : System.Net.ICertificatePolicy
{
 public TrustAllCertificatePolicy()
 { }

 public bool CheckValidationResult(System.Net.ServicePoint sp,
 System.Security.Cryptography.X509Certificates.X509Certificate cert,
 System.Net.WebRequest req, int problem)
 {
 return true;
 }
}

Instantiating Proxy Classes
When Visual Studio .NET generates proxy classes for Web services, it names them by taking a
Web service name and appending the "Binding" string to it. For example, the name of the proxy
class for invoking the vzaenvm service will be vzaenvmBinding; the filer service will
have a proxy class named filerBinding, etc.

Instantiating a proxy class (creating an object from it) is not as straightforward as creating an
ordinary object in your C# program. In this section, we will create a sample class that will
provide methods for creating an object from a proxy class. In addition, the methods of the class
will also set up and populate the header portion of the Agent request message that will be sent to
Agent. Agent request message header contains parameters that provide information on how the
request should be handled on the server side. The most important of those are:

Parameter Name Description
session Agent session ID. The session is established on the server side

after successful login and the session ID is returned to the client
program. Each subsequent Agent request sent form the client
must include this ID in order to be recognized and approved by
Agent.

 Writing Your First Program 15

target The name of the Agent operator to which this request should be
sent for processing. Each Web service has a target operator.
Both the Web service and the corresponding operator have the
same name. As you already know from the beginning of this
section, the first part of the proxy class name is the name of the
Web service, so it is the name of the target operator.

For example, when invoking the vzaenvmBinding object,
this parameter should contain vzaenvm. When invoking the
filerBinding object, the name of the target operator is
filer, and so forth.

Note: There's a single Web service that is an exception to
this rule. The system service (proxy class:
systemBinding) actually requires an omission of this
parameter from the request. For all other services the
parameter must be appropriately set.

dst/host This parameter is used to specify the Server ID of the virtual
environment to which the request should be routed. The
parameter should be used with some of the Web services and it
should be ignored with the others. We will talk in detail about
request routing and will provide examples later in the tutorial.
The parameter will be ignored in the beginning sections of the
tutorial.

 Writing Your First Program 16

Sample Class:
/// <summary>
/// Sample class Binder.
/// Provides methods to create the specified binding object
/// and to populate the Agent message header.
/// </summary>
public class Binder
{
 string URL; // Agent server URL.
 string session; // Agent session ID.

 // Constructor. Sets URL and session ID values.
 public Binder(string url, string sess)
 {
 URL = url;
 session = sess;
 }

 /// <summary>
 /// Method InitBinding (overloaded).
 /// Instantiates a proxy class.
 /// <param name="bindingType">
 /// The System.Type object for a proxy class.
 /// To obtain the object, use the typeof operator
 /// with the name of the proxy class as a parameter.
 /// </param>
 /// <returns>
 /// <para>New proxy class object.</para>
 /// </returns>
 /// </summary>
 public System.Object InitBinding(System.Type bindingType)
 {
 System.Object Binding =
 bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);

 // Set URL.
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);

 // Create the request message header object.
 packet_headerType header = new packet_headerType();

 // Set session ID.
 header.session = session;

 /* Set the "target" parameter in the Agent request
 * message header. The parameter must contain the name
 * of the corresponding Agent operator.
 * The operator name can be obtained from the name of the
 * proxy class. It is the substring from the beginning of the name
 * followed by the "Binding" substring. For example, the name
 * of the corresponding operator for the "filerBinding" class is
 * "filer".
 * All Agent requests except "system" requests must have the
 * target operator value set. System is the only operator that
requires
 * the omission of the "target" parameter from the header.
 */
 if (bindingType != typeof(systemBinding)) {
 header.target = new string[1];
 header.target[0] = bindingType.Name.Replace("Binding", "");
 }

 // Set the request message header.
 bindingType.GetField("packet_header").SetValue(Binding, header);
 return Binding;
 }

 Writing Your First Program 17

 /// <summary>
 /// Method InitBinding (overloaded).
 /// Instantiates a proxy class.
 /// Allows to set destination Container.
 /// </summary>
 /// <param name="bindingType">
 /// The System.Type object for a proxy class.
 /// To obtain the object, use the typeof operator
 /// with the name of the proxy class as a parameter.
 /// </param>
 /// <param name="eid">
 /// The Server ID of the destination Container to which to route
 /// the request message for processing.
 /// </param>
 /// <returns>
 /// <para>New proxy class object.</para>
 /// </returns>
 /// </returns>
 public System.Object InitBinding(System.Type bindingType, string eid)
 {
 System.Object Binding =
 bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);

 // Set URL.
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);

 // Create the request message header object.
 packet_headerType header = new packet_headerType();

 // Set session ID.
 header.session = session;

 /* Set the "target" parameter in the Agent request
 * message header.
 */
 if (bindingType != typeof(systemBinding)) {
 header.target = new string[1];
 header.target[0] = bindingType.Name.Replace("Binding", "");
 }

 // Set the destination Server ID.
 header.dst.host = eid;

 // Set the request message header.
 bindingType.GetField("packet_header").SetValue(Binding, header);
 return Binding;
 }
}

 Writing Your First Program 18

Connection URL
The Agent server listens for the secure HTTPS requests on port 4646. The connection URL will
look similar to the following example (substitute the IP address value with the address of your
server):
https://192.168.0.218:4646

You may also communicate with Agent using HTTP. In this case, the port number is 8080 and
the URL should look like this:
http://192.168.0.218:8080

The URL will be used as an input parameter during the login procedure described in the
following step.

Logging in and Creating a Session
The following is an example of a function that logs the user in using the supplied connection
and login parameters.

Sample function parameters:

Name Description

url Agent server URL. See the Connection URL section (p. 18).

name User name. In this tutorial, we will be login in as a system administrator of the
host server (physical server). You will need to know the password of your
physical server administrator account.

domain We are not going to use this parameter in the tutorial. For more information on
its usage, see Parallels Agent XML Programmer's Reference Guide.

realm Realm ID. Realm is a database containing the user authentication information.
Agent supports various types of authentication databases, including operating
system user registries and LDAP-compliant directories, such as AD/ADAM on
Windows and OpenLDAP on Linux. In our example, we will be using the user
registry of the physical server, which is called System Realm in Agent
terminology. The unique ID that Agent uses for the System Realm is
00000000-0000-0000-0000-000000000000.

 Writing Your First Program 19

The function authenticates the specified user and, if the supplied credentials are valid, creates a
session for the user and returns the session ID. All subsequent Agent requests must include the
session ID in order to be recognized and approved by Agent. The Binder class will take care
of including the session ID in the request message header.

Sample function:
/// <summary>
/// Sample function Login.
/// Authenticates the user using the specified credentials and
/// creates a new session.
/// </summary>
/// <param name="url">Agent server URL.</param>
/// <param name="name">User name.</param>
/// <param name="domain">Domain.</param>
/// <param name="realm">Realm ID.</param>
/// <param name="password">Password</param>
/// <returns>New session ID.</returns>
///
public string Login(string url, string name, string domain, string realm,
string password)
 {
 try {
 System.Net.ServicePointManager.CertificatePolicy = new
TrustAllCertificatePolicy();

 // Login information object.
 login1 loginInfo = new login1();

 /* The sessionmBinding class provides the login and
 * session management functionality.
 */
 sessionmBinding sessionm = new VZA.sessionmBinding();

 /* Instantiate the System.Text.Encoding class that will
 * be used to convert strings to byte arrays.
 */
 System.Text.Encoding ascii = System.Text.Encoding.ASCII;

 // Populate the connection and the login parameters.
 sessionm.Url = url;
 loginInfo.name = ascii.GetBytes(name);
 if (domain.Length != 0) {
 loginInfo.domain = ascii.GetBytes(domain);
 }
 if (realm.Length != 0) {
 loginInfo.realm = realm;
 }
 loginInfo.password = ascii.GetBytes(password);

 // Log the specified user in.
 return sessionm.login(loginInfo).session_id;
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Writing Your First Program 20

Retrieving a List of Virtual Environments
The following function retrieves a list of virtual environments from a physical server. The
function accepts a numeric code specifying the virtual environment state as a parameter
allowing you to retrieve the information only for the virtual environments in a particular state
(running, stopped, etc.). The state codes are as follows:

Code Name
0 Unknown

1 Unexisting

2 Config

3 Down

4 Mounted

5 Suspended

6 Running

7 Repairing

8 License Violation

 Writing Your First Program 21

The function returns a string containing the list of names of the existing virtual environments.
/// <summary>
/// sample function GetCTList.
/// Retrieves the list of virtual environments from a physical server.
/// </summary>
/// <param name="state">virtual environment state code.</param>
/// <returns>virtual environment names.</returns>
///
public string GetCTList(int state)
 {
 string list_result = "";

 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 get_list1 velist = new get_list1();

 /* Set the Container status parameter.
 * -1 means ignore the status.
 */
 env_statusType[] env_status = new env_statusType[1];
 env_status[0] = new env_statusType();
 if (state == -1) {
 env_status[0].stateSpecified = false;
 }
 else {
 env_status[0].state = state;
 }
 velist.status = env_status;

 /* Get the list of the virtual environments then loop through it
getting the
 * Server ID and the name for each Container
 */
 foreach (string ve_eid in env.get_list(velist)) {
 get_info2 ve_info = new get_info2();
 ve_info.eid = new string[1];
 ve_info.eid[0] = ve_eid;

 /* Get the Container name from the virtual environment
configuration structure.
 * Please note that if the name was not assigned to a
 * virtual environment when it was created, the "name" field will
be empty.
 */
 list_result += env.get_info(ve_info)[0].virtual_config.name +
"\n";
 }
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
}

 Writing Your First Program 22

Complete Program Code
using System;
using System.IO;
using System.Collections.Generic;
using System.Text;
using VzSimpleClient.VZA;

namespace VzSimpleClient
{
 class Program
 {
 Binder binder; // Binder object variable.
 string session_id = ""; // Agent session ID.

 // Main.
 static void Main(string[] args)
 {
 Program vzClient = new Program();
 try {
 vzClient.Run();
 }
 catch (System.Web.Services.Protocols.SoapException ex) {
 Console.WriteLine(ex.Code.ToString() + ", " + ex.Message);
 Console.WriteLine("Details:" + ex.Detail.InnerText);
 }
 catch (System.Xml.XmlException xmlex) {
 Console.WriteLine(xmlex.ToString());
 }
 catch (System.InvalidOperationException opex) {
 Console.WriteLine(opex.Message + "\n" + opex.InnerException);
 }
 Console.WriteLine("Press Enter to conintinue...");
 Console.Read();
 }

 ///<summary>
 /// Sample class TrustAllCertificatePolicy.
 /// Used as a certificate policy provider.
 /// Allows all certificates.
 ///</summary>
 public class TrustAllCertificatePolicy : System.Net.ICertificatePolicy
 {
 public TrustAllCertificatePolicy()
 { }

 public bool CheckValidationResult(System.Net.ServicePoint sp,
 System.Security.Cryptography.X509Certificates.X509Certificate
cert,
 System.Net.WebRequest req, int problem)
 {
 return true;
 }
 }

 /// <summary>
 /// Sample class Binder.
 /// Provides methods to create the specified binding object
 /// and to populate the Agent message header.
 /// </summary>
 public class Binder
 {
 string URL; // Agent server URL.
 string session; // Agent session ID.

 Writing Your First Program 23

 // Constructor. Sets URL and session ID values.
 public Binder(string url, string sess)
 {
 URL = url;
 session = sess;
 }

 /// <summary>
 /// Method InitBinding (overloaded).
 /// Creates a binding object.
 /// <param name="bindingType">
 /// The name of the proxy class from which to
 /// create the object.
 /// </param>
 /// <returns>
 /// <para>New binding object.</para>
 /// </returns>
 /// </summary>
 public System.Object InitBinding(System.Type bindingType)
 {
 System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);

 // Set URL.
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);

 // Create the request message header object.
 packet_headerType header = new packet_headerType();

 // Set session ID.
 header.session = session;

 /* Set the "target" parameter in the Agent request
 * message header. The parameter must contain the name
 * of the corresponding Agent operator.
 * The operator name can be obtained from the name of the
 * proxy class. It is the substring from the beginning of the
name
 * followed by the "Binding" substring. For example, the name
 * of the corresponding operator for the "filerBinding" class
is
 * "filer".
 * All Agent requests except "system" requests must have the
 * target operator value set. System is the only operator that
requires
 * the omission of the "target" parameter from the header.
 */
 if (bindingType != typeof(systemBinding)) {
 header.target = new string[1];
 header.target[0] = bindingType.Name.Replace("Binding",
"");
 }

 // Set the request message header.
 bindingType.GetField("packet_header").SetValue(Binding,
header);
 return Binding;
 }

 /// <summary>
 /// Method InitBinding (overloaded).
 /// Creates a binding object.
 /// Allows to set destination virtual environment.
 /// </summary>
 /// <param name="bindingType">
 /// The name of the proxy class from which

 Writing Your First Program 24

 /// to create the object.
 /// </param>
 /// <param name="eid">
 /// The Server ID of the destination virtual environment to which
to route
 /// the request message for processing.
 /// </param>
 /// <returns>
 /// <para>New binding object.</para>
 /// </returns>
 /// </returns>
 public System.Object InitBinding(System.Type bindingType, string
eid)
 {
 System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);

 // Set URL.
 bindingType.GetProperty("Url").SetValue(Binding, URL, null);

 // Create the request message header object.
 packet_headerType header = new packet_headerType();

 // Set session ID.
 header.session = session;

 /* Set the "target" parameter in the Agent request
 * message header.
 */
 if (bindingType != typeof(systemBinding)) {
 header.target = new string[1];
 header.target[0] = bindingType.Name.Replace("Binding",
"");
 }

 // Set the destination Server ID.
 header.dst.host = eid;

 // Set the request message header.
 bindingType.GetField("packet_header").SetValue(Binding,
header);
 return Binding;
 }
 }

 /// <summary>
 /// Sample function Login.
 /// Authenticates the user using the specified credentials and
 /// creates a new session.
 /// </summary>
 /// <param name="url">Agent server URL.</param>
 /// <param name="name">User name.</param>
 /// <param name="domain">Domain.</param>
 /// <param name="realm">Realm ID.</param>
 /// <param name="password">Password</param>
 /// <returns>New session ID.</returns>
 ///
 public string Login(string url, string name, string domain, string
realm, string password)
 {
 try {
 System.Net.ServicePointManager.CertificatePolicy = new
TrustAllCertificatePolicy();

 // Login information object.
 login1 loginInfo = new login1();

 Writing Your First Program 25

 /* The sessionmBinding class provides the login and
 * session management functionality.
 */
 sessionmBinding sessionm = new VZA.sessionmBinding();

 /* Instantiate the System.Text.Encoding class that will
 * be used to convert strings to byte arrays.
 */
 System.Text.Encoding ascii = System.Text.Encoding.ASCII;

 // Populate the connection and the login parameters.
 sessionm.Url = url;
 loginInfo.name = ascii.GetBytes(name);
 if (domain.Length != 0) {
 loginInfo.domain = ascii.GetBytes(domain);
 }
 if (realm.Length != 0) {
 loginInfo.realm = realm;
 }
 loginInfo.password = ascii.GetBytes(password);

 // Log the specified user in.
 return sessionm.login(loginInfo).session_id;
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
 }

 /// <summary>
 /// sample function GetCTList.
 /// Retrieves the list of virtual environments from the physical
server.
 /// </summary>
 /// <param name="state">virtual environment state code.</param>
 /// <returns>virtual environment names.</returns>
 ///
 public string GetCTList(int state)
 {
 string list_result = "";

 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 get_list1 velist = new get_list1();

 /* Set the virtual environment status parameter.
 * -1 means ignore the status.
 */
 env_statusType[] env_status = new env_statusType[1];
 env_status[0] = new env_statusType();
 if (state == -1) {
 env_status[0].stateSpecified = false;
 }
 else {
 env_status[0].state = state;
 }
 velist.status = env_status;

 /* Get the list of the virtual environments then loop through
it getting the
 * Server ID and the name for each virtual environment
 */

 Writing Your First Program 26

 foreach (string ve_eid in env.get_list(velist)) {
 get_info2 ve_info = new get_info2();
 ve_info.eid = new string[1];
 ve_info.eid[0] = ve_eid;

 /* Get the virtual environment name from the virtual
environment configuration structure.
 * Please note that if name was not assigned to a
 * virtual environment when it was created, the "name"
field will be empty.
 */
 list_result +=
env.get_info(ve_info)[0].virtual_config.name + "\n";
 }
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
 }

 /// <summary>
 /// The Run() function is called from Main().
 /// It contains the code that executes other sample functions.
 /// </summary>
 ///
 public void Run()
 {
 /* The Agent server URL. Use the IP of
 * your own physical server here.
 */
 string url = "http://10.30.67.54:8080/";

 // User name.
 string user = "root";

 // Domain name.
 string domain = "";

 /* Realm ID.
 * We are using the "system" realm here, so the
 * user will be authenticated against the
 * host operating system user registry.
 */
 string realm = "00000000-0000-0000-0000-000000000000";
 string password = "1q2w3e";

 // Log the user in.
 session_id = this.Login(url, user, domain, realm, password);
 Console.WriteLine("Session ID: " + session_id);
 Console.WriteLine();

 // Create the Binder object.
 if (binder == null) {
 binder = new Binder(url, session_id);
 }

 // Get the list of virtual environments from the physical server.
 Console.WriteLine(GetCTList(-1));
 Console.WriteLine();
 }
 }
}

 27

C H A P T E R 4

Managing Virtual Environments

The material in this chapter provides sample code and explains how to perform the most
common virtual environment management tasks.

In This Chapter
Creating a Virtual Environment ... 28
Getting Server ID From Name.. 32
Starting, Stopping, Restarting a Virtual Environment .. 33
Destroying a Virtual Environment .. 34
Suspending and Resuming a Virtual Environment ... 35
Getting Virtual Environment Configuration Information ... 36
Configuring a Virtual Environment .. 37
Cloning a Virtual Environment ... 43
Migrating a Virtual Environment to a Different Host... 45
Monitoring Performance ... 48
Monitoring Alerts.. 54
Managing Files.. 56
Package Management ... 63

 Managing Virtual Environments 28

Creating a Virtual Environment
When creating a new virtual environment, the following configuration parameters are
mandatory and must be selected every time:

 Sample configuration name. virtual environments software comes with a set of sample
configurations that are installed on the physical server at the time the virtual environments
software is installed. XML API provides the env_samplem/get_sample_conf call to
retrieve the list of the available configurations. In the example provided in this section, the
C# equivalent of that call is the env_samplemBinding.get_sample_conf()
method.

 Operating System Template. The list of the available templates can be retrieved using the
vzapkgm.get_list XML API call. The C# equivalent is
vzapkgmBinding.get_list call. For simplicity, we are not including this call in the
example because virtual environments for Windows currently comes with just one OS
template, and Virtuozzo for Linux has one template for each supported Linux distribution.
For example, the standard Red Hat Linux OS template name is redhat-as3-minimal.

The rest of the parameters that we use in this example are optional but are typically used when a
new virtual environment is created. The following sample shows how to create a virtual
environment.

Sample Function Parameters:

Name Description

name The name that you would like to use for the virtual
environment.

os_template The name of the OS template to use for the virtual
environment.

platform Operating system type: linux or windows. This parameter
will be used in our function to select a sample configuration for
the virtual environment. If the sample configuration is
compatible with the specified platform, we will use it. In a real
application, you would probably select the sample
configuration in advance and would pass its name to the
method that actually creates a virtual environment. In this
example, we automate this task while providing a
demonstration of how to retrieve the list of the available
sample configurations.

architecture CPU architecture, e.g. x86, ia64. This parameter, together
with the platform parameter (above) will also be used to
determine the sample configuration compatibility with the
specified CPU architecture.

hostname The hostname that you would like to use for the virtual
environment.

ip The IP address to assign to the virtual environment.

netmask Netmask.

 Managing Virtual Environments 29

network Network interface ID: venet0 for Linux; venet1 for
Windows. These are the standard host-routed network
interfaces. For other network configuration scenarios, please
refer to Parallels Agent XML Programmer's Reference.

offline_management Specifies whether to turn the virtual environment Offline
Management feature on or off.

 Managing Virtual Environments 30

Sample Function:
/// <summary>
/// Sample function CreateCT.
/// Creates a new virtual environment.
/// </summary>
/// <param name="name">virtual environment name.</param>
/// <param name="os_template">OS template name.</param>
/// <param name="platform">Operating system type: linux or windows.</param>
/// <param name="architecture">CPU architecture (x86, ia64)</param>
/// <param name="hostname">virtual environment hostname.</param>
/// <param name="ip">virtual environment IP address.</param>
/// <param name="netmask">Netmask.</param>
/// <param name="network">Network interface ID.</param>
/// <param name="offline_management">
/// A flag specifyin whether to turn the "offline management"
/// feature on or off.
/// </param>
/// <returns>Server ID of the new virtual environment.</returns>
public string CreateCT(string name, string os_template, string platform,
string architecture, string hostname, string ip, string netmask, string
network, bool offline_management)
{
 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 create create_input = new create();

 // virtual environment configuration information.
 venv_configType1 veconfig = new venv_configType1();

 /* Retrieve the list of sample configurations.
 * Select the first one that is compatible with the
 * specified platform (Linux, Windows) and CPU architecture.
 */
 env_samplemBinding env_sample =
(env_samplemBinding)binder.InitBinding(typeof(env_samplemBinding));
 get_sample_conf get_sample = new get_sample_conf();
 sample_confType[] samples = env_sample.get_sample_conf(get_sample);

 if (samples != null) {
 foreach (sample_confType sample in samples) {
 if (sample.env_config.os != null) {
 if (sample.env_config.os.platform == platform &&
sample.env_config.architecture == architecture) {
 // Set sample configuration ID.
 veconfig.base_sample_id = sample.id;
 break;
 }
 }
 }
 }

 // Set OS template.
 templateType osTemplate = new templateType();
 osTemplate.name = os_template;
 veconfig.os_template = osTemplate;

 // Set virtual environment name
 veconfig.name = name;

 // Set virtual environment hostname
 veconfig.hostname = hostname;

 Managing Virtual Environments 31

 // Set virtual environment IP address and netmask.
 ip_addressType[] ip_address = new ip_addressType[1];
 ip_address[0] = new ip_addressType();
 ip_address[0].ip = ip;
 ip_address[0].netmask = netmask;

 // Set network.
 net_vethType[] net = new net_vethType[1];
 net[0] = new net_vethType();
 net[0].host_routed = new object();
 net[0].id = network;
 net[0].ip_address = ip_address;
 veconfig.net_device = net;

 // Set the offline management feature.
 veconfig.offline_managementSpecified = true;
 veconfig.offline_management = offline_management;

 // Finalize the new virtual environment configuration.
 create_input.config = veconfig;

 // Create the virtual environment.
 return env.create(create_input).env.eid;

 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

The function invocation example:
createCT("sample_ve", "redhat-as3-minimal", "linux","x86",
"sample_ve_hostname", "10.16.3.179", "255.255.255.0", "venet0", true);

 Managing Virtual Environments 32

Getting Server ID From Name
The following is a simple function that will get the Server ID of a virtual environment using its
name. This function can be helpful when you want to use any of the other functions that accept
the Server ID as a parameter. The reason is that you usually know the name of the virtual
environment that you would like to work with, but you most likely don't know its Server ID (the
globally unique ID that Agent automatically assigns to every virtual environment).
/// <summary>
/// Sample function NameToEid.
/// Gets the Server ID of the virtual environment specified by its name.
/// </summary>
/// <param name="name">virtual environment name.</param>
/// <returns>Server ID of the virtual environment.</returns>
public string NameToEid(string name)
{
 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 get_info2 getInfo = new get_info2();
 getInfo.eid = new string[1];
 get_list1 velist = new get_list1();
 string eids = "";
 string[] nn = env.get_list(velist);

 foreach (string eid in nn) {
 getInfo.eid[0] = eid;
 envType[] envs = env.get_info(getInfo);
 if (envs.Length != 0) {
 if (env.get_info(getInfo)[0].virtual_config.name == name) {
 eids = eid;
 break;
 }
 else {
 eids = "";
 }
 }
 }

 return eids;
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 33

Starting, Stopping, Restarting a
Virtual Environment

To start a virtual environment, use the vzaenvmBinding.start() method passing the
Server ID. See Creating a Simple Client Program (p. 13) for the example on how to obtain the list
of the Server IDs.
/// <summary>
/// Sample function StartCT.
/// Starts the specified virtual environment.
/// </summary>
/// <param name="ve_eid">The Server ID of the virtual environment.</param>
/// <returns>"OK" or error information.</returns>
public string StartCT(string ve_eid)
{
 try {

 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 start start_input = new start();

 // Set Server ID.
 start_input.eid = ve_eid;

 // Start the virtual environment.
 env.start(start_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

Stopping and Restarting a virtual environment is similar to the example above. The following
two functions demonstrate how it's done.
/// <summary>
/// Sample function StopCT.
/// Stops a virtual environment.
/// </summary>
/// <param name="ve_eid">Server ID of the virtual environment.</param>
/// <returns></returns>
public string StopCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 stop1 stop_input = new stop1();

 // Set the Server ID of the virtual environment.
 stop_input.eid = ve_eid;

 // Stop the virtual environment.
 env.stop(stop_input);

 return "OK!";
 }

 Managing Virtual Environments 34

 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

/// <summary>
/// Sample function RestartCT.
/// Restarts a virtual environment.
/// </summary>
/// <param name="ve_eid">virtual environment Server ID.</param>
/// <returns></returns>
public string RestartCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 restart1 restart_input = new restart1();

 // Set the Server ID of the virtual environment.
 restart_input.eid = ve_eid;

 // Restart the virtual environment.
 env.restart(restart_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

Destroying a Virtual Environment
To destroy a virtual environment, use the vzaenvmBinding.destroy() method. The
method accepts the Server ID of the virtual environment as a single parameter.
/// <summary>
/// Sample function DestroyCT.
/// Destroys a virtual environment.
/// </summary>
/// <param name="ve_eid">Server ID of the virtual environment.</param>
/// <returns>"OK" or error information.</returns>
public string DestroyCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 destroy destroy_input = new destroy();

 // Set the Server ID.
 destroy_input.eid = ve_eid;
 env.destroy(destroy_input);

 return "The virtual environment has been destroyed.";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 35

Suspending and Resuming a Virtual
Environment

The following two examples show how to suspend and then resume a virtual environment.
/// <summary>
/// Sample function. Suspends a virtual environment.
/// </summary>
/// <param name="ve_eid">The Server ID of the virtual environment.</param>
/// <returns>"OK" or error information.</returns>
public string SuspendCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 suspend1 suspend_input = new suspend1();

 // Set the virtual environment Server ID.
 suspend_input.eid = ve_eid;

 // Suspend the virtual environment.
 env.suspend(suspend_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

/// <summary>
/// Sample function ResumeCT.
/// Resumes a virtual environment that was previuosly suspended.
/// </summary>
/// <param name="ve_eid"></param>
/// <returns></returns>
public string ResumeCT(string ve_eid)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 resume1 resume_input = new resume1();

 //Set the virtual environment Server ID.
 resume_input.eid = ve_eid;

 // Resume virtual environment.
 env.resume(resume_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 36

Getting Virtual Environment
Configuration Information

A virtual environment configuration information is stored on the physical server. This
configuration (also called virtual configuration) is used by virtual environments to set the
necessary virtual environment parameters when the virtual environment is started. To retrieve a
virtual environmentr configuration, use the vzaenvmBinding.get_info method. For the
complete list and description of the input parameters, see the vzaenvm/get_info call in
the Parallels Agent XML Programmer's Reference guide.

The following sample shows how to retrieve the complete configuration information for the
specified virtual environment.
/// <summary>
/// Sample function GetConfig.
/// Retrieves virtual environment configuration information.
/// </summary>
/// <param name="ve_eid">The virtual environment Server ID.</param>
/// <returns>
/// A string containing the virtual environment configuration information.
/// </returns>
public string GetConfig(string ve_eid)
{
 string ve_info = "";
 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The input parameters.
 get_info2 getInfo_input = new get_info2();
 string[] eids = new string[1];

 // Set the Server ID of the virtual environment for which to get the
info.
 eids[0] = ve_eid;
 getInfo_input.eid = eids;

 // Get the virtual environment information from the physical server.
 envType[] envtype = env.get_info(getInfo_input);

 // Get the virtual environment configuration from the returned object.
 venv_configType veconfig = envtype[0].virtual_config;

 // Get virtual environment name.
 ve_info += "Name: " + envtype[0].virtual_config.name + "\n";

 // Get virtual environment description.
 if (envtype[0].virtual_config.description != null &&
envtype[0].virtual_config.description.Length != 0)
 ve_info += "Description: " +

System.Text.Encoding.ASCII.GetString(envtype[0].virtual_config.description) +
"\n" +
 //Get network configuration.
 "Network configuration: \n";
 if (envtype[0].virtual_config.address != null) {
 ve_info += "IP: " + veconfig.address[0].ip + "\n" +
 "Netmask: " + veconfig.address[0].netmask + "\n";

 Managing Virtual Environments 37

 }

 // Get virtual environment hostname.
 ve_info += "HostName: " + veconfig.hostname + "\n" +
 // Get architecture
 "Architecture: " + veconfig.architecture + "\n" +
 // Get OS
 "OS name: " + veconfig.os.name + "\n" +
 "OS platform: " + veconfig.os.platform + "\n" +
 "OS kernel: " + veconfig.os.kernel + "\n" +
 "OS version: " + veconfig.os.version + "\n" +
 // Get status
 "Status: " + envtype[0].status.state.ToString() + "\n" +
 // Get QoS information.
 "QoS cur: " + veconfig.qos[0].cur.ToString() + "\n" +
 "QoS hard: " + veconfig.qos[0].hard.ToString() + "\n" +
 "QoS id: " + veconfig.qos[0].id + "\n" +
 "QoS soft: " + veconfig.qos[0].soft.ToString();// +"\n";

 }
 catch (Exception e) {
 ve_info += "Exception: " + e.Message;
 }
 return ve_info;
}

Configuring a Virtual Environment
This section shows how to modify a virtual environment configuration. It is organized into
subsections each demonstrating how to modify a particular configuration parameter. The basic
idea behind modifying the virtual environment configuration is simple. Agent SOAP API has
classes that hold the virtual environment configuration parameters. You instantiate the necessary
classes (depending on the parameter type) and populate only those members (configuration
parameters) that you would like to modify. You then submit the populated objects to Agent
using the appropriate class and method. Upon receiving the new configuration, Agent will
updated only those parameters that you specified in the input structure.

Modifying IP Address
Sample Function Parameters:

Name Description

ve_eid The Server ID of the virtual environment for which you would like to modify
the configuration info.

new_ip The new IP address. A virtual environment may have multiple IP addresses
assigned to it. When modifying the IP address information, all of the existing
address information will be removed from the configuration and the new
addresses will be put in their place. In this example, we will be operating with
a single IP address for simplicity.

netmask New netmask.

network The name of the network interface for which you would like to modify the IP
address settings.

 Managing Virtual Environments 38

Sample Function:
/// <summary>
/// Sample function ModifyIP.
/// Modifies the virtual environment IP address.
/// </summary>
/// <param name="ve_eid">The virtual environment Server ID.</param>
/// <param name="new_ip">New IP address.</param>
/// <param name="netmask">New netmask.</param>
/// <param name="network">Network interface name.</param>
/// <returns>"OK" or error information.</returns>
public string ModifyIP(string ve_eid, string new_ip, string netmask, string
network)
{
 try {
 // Instantiate the proxy class.
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

 // The main input object.
 set2 set_input = new set2();

 // Set the virtual environment Server ID.
 set_input.eid = ve_eid;

 // The virtual environment configuration structure.
 venv_configType1 veconfig = new venv_configType1();

 // Set ip addresses.
 ip_addressType[] ip_address = new ip_addressType[1];
 ip_address[0] = new ip_addressType();
 ip_address[0].ip = new_ip;
 ip_address[0].netmask = netmask;

 // The network interface information structure.
 net_vethType[] net = new net_vethType[1];
 net[0] = new net_vethType();

 // Set the network parameters.
 net[0].host_routed = new object();
 net[0].id = network;
 net[0].ip_address = ip_address;
 veconfig.net_device = net;
 set_input.config = veconfig;

 // Modify the virtual environment configuration.
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 39

Modifying Hostname
/// <summary>
/// Sample function ModifyHostname.
/// Modifies virtual environment hostname.
/// </summary>
/// <param name="ve_eid">The virtual environment Server ID.</param>
/// <param name="new_hostname">New hostname.</param>
/// <returns>OK/Error.</returns>
public string ModifyHostname(string ve_eid, string new_hostname)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set the virtual environment Server ID.
 set_input.eid = ve_eid;

 venv_configType1 veconf = new venv_configType1();

 // Set the new hostname.
 veconf.hostname = new_hostname;
 set_input.config = veconf;

 // Modify the virtual environment configuration.
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 40

Modifying Virtual Environment Name
/// <summary>
/// Sample function ModifyName.
/// Modifies virtual environment name.
/// </summary>
/// <param name="ve_eid">The virtual environment Server ID.</param>
/// <param name="new_name">New virtual environment name.</param>
/// <returns>OK/Error.</returns>
///
public string ModifyName(string ve_eid, string new_name)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set the virtual environment Server ID.
 set_input.eid = ve_eid;
 venv_configType1 veconf = new venv_configType1();

 // Set new virtual environment name.
 veconf.name = new_name;
 set_input.config = veconf;

 // Modify the virtual environment configuration.
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 41

Modifying QoS Settings
/// <summary>
/// Sample function ModifyQoS.
/// Modifies virtual environment QoS settings.
/// </summary>
/// <param name="ve_eid">The virtual environment Server ID.</param>
/// <param name="qos_id">QoS ID.</param>
/// <param name="hard">New hard limit value.</param>
/// <param name="soft">New soft limit value.</param>
/// <returns></returns>
public string ModifyQoS(string ve_eid, string qos_id, int hard, int soft)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set the virtual environment Server ID.
 set_input.eid = ve_eid;

 venv_configType1 veconfig = new venv_configType1();

 // Set virtual environment QoS.
 veconfig.qos = new qosType[1];
 veconfig.qos[0] = new qosType();

 // Set QoS ID.
 veconfig.qos[0].id = qos_id;

 // Set hard limit
 veconfig.qos[0].hardSpecified = true;
 veconfig.qos[0].hard = hard;

 // Set soft limit
 veconfig.qos[0].softSpecified = true;
 veconfig.qos[0].soft = soft;

 // Modify the virtual environment configuration.
 set_input.config = veconfig;
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 42

Modifying DNS Server Assignment
/// <summary>
/// Sample function ModifyDNS.
/// Modifies virtual environment DNS server assignment.
/// </summary>
/// <param name="ve_eid">The virtual environment Server ID.</param>
/// <param name="new_nameserver">New nameserver name.</param>
/// <returns>OK/Error.</returns>
public string ModifyDNS(string ve_eid, string new_nameserver)
{
 try {
 vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));
 set2 set_input = new set2();

 // Set the virtual environment Server ID.
 set_input.eid = ve_eid;

 // virtual environment configuration.
 venv_configType1 veconfig = new venv_configType1();

 // Network device.
 veconfig.net_device = new net_vethType[1];
 veconfig.net_device[0] = new net_vethType();

 // Set virtual environment DNS.
 veconfig.net_device[0].nameserver = new string[1];
 veconfig.net_device[0].nameserver[0] = new_nameserver;

 // Modify virtual environment configuration.
 set_input.config = veconfig;
 env.set(set_input);

 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 43

Cloning a Virtual Environment
Cloning refers to a process of creating an exact copy (or multiple copies) of a virtual
environment on the same physical server. The new virtual environment will have its own private
area and root directories but the rest of the configuration parameters will be exactly the same.
This means that even the parameters that should be unique for each individual virtual
environment (IP addresses, hostname, name) will be copied unchanged. You don't have an
option to specify new configuration parameter values during the cloning operation. Instead, you
will have to clone the virtual environment first and then update the configuration of the new
virtual environment in a separate procedure. There are a few exceptions to this rule. You can
optionally specify custom private area and root directories for the new virtual environment, but
only if you are creating a single copy of the source virtual environment. You also have an option
to specify custom virtual environment ID for each clone. If you don't want to set these options
manually, their values will be selected automatically.

You can clone both running and stopped virtual environments. There are some differences when
cloning virtual environments on Windows and on Linux platforms:

On Linux, the running source virtual environment will be suspended momentarily during the
cloning operation. This is done in order to eliminate possible changes to the virtual environment
state and status. Once all of the data is read from the source virtual environment, the virtual
environment is resumed and the cloning operation proceeds normally.

On Windows, a snapshot of the virtual environment is taken on the fly, so the source virtual
environment operation is never interrupted during cloning.

The following sample illustrates how to clone a virtual environment. The name of the C# class
that provides the cloning functionality is relocatorBinding (stepping ahead, this class also
provides the virtual environment migration functionality, which we'll discuss in the following
section). The XML API equivalent of the class is the relocator interface.

Sample Function Parameters:

Name Description

eid The Server ID of the virtual environment to clone.

count The number of clones to create.

 Managing Virtual Environments 44

Sample Function:
/// <summary>
/// Sample function CloneCT.
/// Create an exact copy of the specified virtual environment.
/// </summary>
/// <param name="eid">The Server ID of the Source virtual environment.</param>
/// <param name="count">Number of copies to create.</param>
/// <returns>The IDs of the new virtual environments.</returns>
///
public string[] CloneCT(string eid, int count)
{
 cloneResponse response;

 try {
 // Instantiate the proxy class
 relocatorBinding relocator =
(relocatorBinding)binder.InitBinding(typeof(relocatorBinding));

 // The main input parameter.
 clone clone_input = new clone();

 // Set the Server ID of the source virtual environment.
 clone_input.eid = eid;

 // Number of copies to create.
 clone_input.count = 1;

 // Clone the virtual environment(s).
 response = relocator.clone(clone_input);
 }
 catch (Exception e) {
 response = new cloneResponse();
 response.eid_list[0] = "Exception: " + e.Message;
 return response.eid_list;
 }
 return response.eid_list;
}

 Managing Virtual Environments 45

Migrating a Virtual Environment to a
Different Host

You can migrate an existing virtual environment from one physical server to another. The
resulting virtual environment is created as an exact copy of the source virtual environment. To
migrate a virtual environment, the target physical server must have the software virtualization
product (Parallels Virtuozzo Containers or Parallels Server Bare Metal) and Parallels Agent
component installed on it.

The following V2V (virtual-to-virtual) migration types are supported:

 Offline migration. Performed on a stopped or a running source virtual environment. If the
virtual environment is stopped, all its files are simply copied from the source host to the
target host. If the virtual environment is running, the files are first copied to the target
machine and then the virtual environment is stopped momentarily. At this point, the data
that was copied to the target machine is compared to the original data and the files that have
changed since the copying began are updated. The source virtual environment is then started
back up. The downtime depends on the size of the virtual environment but should normally
take only a minute or so. Offline migration is the default migration type.

 Simple online migration. Performed on a running source virtual environment. In the
beginning of the migration process, the virtual environment becomes momentarily locked
and all of its data, including the states of all running processes, is dumped into an image file.
After that, the virtual environment operation is resumed, and the dump file is transferred to
the target computer where a new virtual environment is automatically created from it.

 Lazy online migration. Instead of migrating all of the data in one big step (as in simple
online migration above), lazy migration copies the data over a time period. Initially, only the
data that is absolutely necessary to bring the new virtual environment up is copied to the
target host. The rest of the data remains locked on the source host and is copied to the
destination host on as-needed basis. By using this approach, you can decrease the services
downtime to near zero.

 Iterative online. During the iterative online migration, the virtual environment memory is
transferred to the destination physical server before the virtual environment data is dumped
into an image file. Using this type of online migration allows to attain the smallest service
delay.

 Iterative + lazy online migration. This type of online migration combines the techniques
used in both the lazy and iterative migration types, i.e. some part of the virtual environment
memory is transferred to the destination host before dumping a virtual environment, and the
rest of the data is transferred on-demand after the virtual environment has been successfully
created on the target host.

On successful migration, the original virtual environment will no longer exist on the source
physical server. This is done in order to avoid possible conflicts that may occur if both virtual
environments -- the original and the copy -- are running at the same time. Although the original
virtual environment will no longer show up in the virtual environment list on the source
physical server, the virtual environment data will not be deleted. By default, the data is kept in
its original location (the virtual environment private area) but the private area directory itself
will be renamed. If you wish, you can completely remove the original virtual environment data
from the source physical server by including the options/remove parameter in the request.

 Managing Virtual Environments 46

The name of the C# class that provides the migration functionality is relocatorBinding.
The XML API equivalent is the relocator interface.

The following sample shows how to perform a V2V migration.

Sample Function Parameters:

Name Description

eid The source The virtual environment Server ID.

mn_type Migration type:

0 -- Offline

1 -- Simple online

2 -- Lazy online

3 -- Iterative online

4 -- Iterative lazy online

ip_address This and the rest of the parameters are the connection and login
information that will be used to log in to the target physical server.

The target physical server IP address.

port Port number.

protocol Communication protocol to use:

SSL -- SSL over TCP/IP.

TCP -- plain TCP/IP.

NamedPipe -- named pipe.

username User name. The user must have sufficient rights to connect to the
target physical server.

realm Realm ID. The ID of the authentication database against which to
authenticate the specified user. In this example, we will be using
System Realm -- the user registry of the host operating system.

password User password.

 Managing Virtual Environments 47

Sample Function:
/// <summary>
/// Sample function Migrate.
/// Migrates a virtual environment to a different physical server.
/// </summary>
/// <param name="eid">Source virtual environment Server ID.</param>
/// <param name="mn_type">Migration type.</param>
/// <param name="ip_address">Target physical server IP address.</param>
/// <param name="port">Target physical server port number.</param>
/// <param name="protocol">Communication protocol.</param>
/// <param name="username">
/// User name with which to login to the
/// target physical server.
/// </param>
/// <param name="realm">
/// Realm ID on the target physical server against which to authenticate the
user.
/// </param>
/// <param name="password">User password.</param>
/// <returns>"OK" or error information.</returns>
///
public string Migrate(string eid, int migration_type, string ip_address, uint
port, string protocol, string username, string realm, string password)
{
 try {
 relocatorBinding relocator =
(relocatorBinding)binder.InitBinding(typeof(relocatorBinding));
 migrate_v2v v2v_input = new migrate_v2v();

 // Set the source virtual environment Server ID.
 v2v_input.eid_list = new string[1];
 v2v_input.eid_list[0] = eid;

 /* Set migration type.
 * The "options" member allows you to set other
 * migration options. See Parallels Agent XML Reference
 * for more info.
 */
 v2v_input.options = new v2v_migrate_optionsType();
 v2v_input.options.type = migration_type;

 // Set the target physical server connection info.
 v2v_input.dst = new connection_infoType();
 connection_infoType connection_parm =
(connection_infoType)v2v_input.dst;

 // Set the target physical server IP address.
 v2v_input.dst.address = ip_address;

 // Set the port number.
 v2v_input.dst.portSpecified = true;
 v2v_input.dst.port = port;

 // Set protocol.
 v2v_input.dst.protocol = protocol;

 // Set login parameters.
 v2v_input.dst.login = new auth_nameType();
 v2v_input.dst.login.name =
System.Text.ASCIIEncoding.ASCII.GetBytes(username);
 v2v_input.dst.login.realm = realm;

 // Set user password.
 v2v_input.dst.password =
System.Text.ASCIIEncoding.ASCII.GetBytes(password);

 Managing Virtual Environments 48

 // Set infinite timeout for the request.
 relocator.Timeout = -1;
 relocator.migrate_v2v(v2v_input);

 return "OK";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

Monitoring Performance
Performance Monitor is an operator that allows to monitor the performance of the physical
server and virtual environments. By monitoring the utilization of the system resources, you can
acquire an important information about your Parallels system health. Performance Monitor can
track a range of processes in real time and provide you with the results that can be used to
identify current and potential problems. It can assist you with the tracking of the processes that
need to be optimized, monitoring the results of the configuration changes, identifying the
resource usage bottlenecks, and planning of upgrades.

Agent SOAP API provides the perf_monBinding class that allows to retrieve performance
reports from the physical server. The types of reports include the performance of the physical
server itself and the performances of the individual virtual environments. You can select the
type and a particular aspect of the server performance that you would like to see. This
performance type is called a class. The performance aspect is called a counter. The following
section describes classes and counters in detail.

 Managing Virtual Environments 49

Classes, Instances, Counters
First, we have to discuss the Performance Monitor terminology.

Performance Class

Performance class is a type of the system resource that can be monitored. This includes CPU,
memory, disk, network, etc. A class is identified by ID. For the complete list of counters see
Appendix A: Performance Counters in the Parallels Agent XML Reference guide. Please note that
there are two separate groups of classes: one is used for monitoring virtual environments and the
other for monitoring physical servers.

Class Instance

While class identifies the type of the system resource, the term "instance" refers to a particular
device when multiple devices of the same type exist in the system. For example, network in
general is a class, but each network card installed in the system is an instance of that class. Each
class has at least one instance, but not all classes may have multiple instances. Appendix A:
Performance Counters in the Parallels Agent XML Reference guide provides information on how
to obtain a list of instances for each class.

Performance Counter

Counters are used to measure various aspects of a performance, such as the CPU times, network
rates, disk usage, etc. Each class has its own set of counters. Counter data is comprised of the
current, minimum, maximum, and average values. For the complete list of counters see
Appendix A: Performance Counters in the Parallels Agent XML Reference guide.

 Managing Virtual Environments 50

Getting a Performance Report
The following lists contain some of the commonly used performance classes and the counters
from the counters_vz_cpu class as an example.

Parallels-specific Performance Classes:

counters_vz_cpu

counters_vz_net

counters_vz_loadavg

counters_vz_process

counters_vz_slm

counters_vz_system

counters_vz_memory

counters_vz_hw_net

counters_vz_quota

counters_vz_ubc

Counters from the counters_vz_cpu class:

counter_cpu_system

counter_cpu_user

counter_cpu_idle

counter_cpu_nice

counter_cpu_starvation

counter_cpu_system_states

counter_cpu_user_states

counter_cpu_idle_states

The following is an example of two functions working together that retrieve the latest
performance report using the specified Server ID, performance class, and performance counter.

The GetPerfData sample function initializes and populates the necessary input parameters,
gets the performance data from Agent, and then calls the getData sample function that
extracts the data and puts it into a string that can be displayed on the screen.

Sample Function Parameters:

 Managing Virtual Environments 51

Name Description

eid Server ID of the virtual environment for which to retrieve the
performance data.

class_name The name of the performance class.

counter_name The name of the performance counter.

 Managing Virtual Environments 52

Sample Function:
/// <summary>
/// Sample function GetPerfData.
/// Gets the virtual environment or the physical server performance data.
/// </summary>
/// <param name="eid"></param>
/// <param name="class_name"></param>
/// <param name="counter_name"></param>
/// <returns>A string containing the performance data.</returns>
///
public string GetPerfData(string eid, string class_name, string counter_name,
string class_instance)
{
 string perf_data = "";
 try {

 // Create binding object.
 perf_monBinding perf_mon =
(perf_monBinding)binder.InitBinding(typeof(perf_monBinding));

 // The main input object.
 get5 get_input = new get5();

 // Set Server ID.
 get_input.eid_list = new string[1];
 get_input.eid_list[0] = eid;

 /* Set the performance class name.
 * Multiple classes can be set if desired.
 */
 get_input.@class = new classType1[1];
 get_input.@class[0] = new classType1();
 get_input.@class[0].name = class_name;

 // Set class instance.
 get_input.@class[0].instance = new classTypeInstance[1];
 get_input.@class[0].instance[0] = new classTypeInstance();
 if (class_instance.Length != 0) {
 get_input.@class[0].instance[0].name = class_instance;
 }

 // Set counter. Multiple counters can be set if desired.
 get_input.@class[0].instance[0].counter = new string[1];
 get_input.@class[0].instance[0].counter[0] = counter_name;

 /* Get the performance data. The returned data is
 * extracted using the GetData helper function, which
 * is defined below.
 */
 GetData(perf_mon.get(get_input), out perf_data);
 }
 catch (Exception e) {
 perf_data += "Exception: " + e.Message;
 }
 return perf_data;
}

/// <summary>
/// Sample function GetData.
/// This is a helper function that extracts the performance
/// data retrieved by the getPerfData function defined above.
/// </summary>
/// <param name="counters_dat">
/// Contains the data for each class, instance, and counter that
/// were specified in the request that returned this object (the

 Managing Virtual Environments 53

/// perf_mon.get() call above). To extract the data, we have to iterate
through all
/// of them.
/// </param>
/// <param name="counters_info">
/// Output. A string containing the extracted data.
/// </param>
///
public void GetData(perf_dataType[] counters_dat, out string counters_info)
{
 counters_info = "";
 if (counters_dat.Length != 0) {
 foreach (perf_dataType counter_dat in counters_dat) {
 if (counter_dat.@class != null) {
 foreach (perf_dataTypeClass dat in counter_dat.@class) {
 counters_info += "\n Class name: " + dat.name + "\n" +
 "Instances:\n";
 if (dat.instance != null) {
 foreach (perf_dataTypeClassInstance instance in
dat.instance) {
 counters_info += " DataClassInstance: " +
instance.name + "\n";
 if (instance.counter != null) {
 foreach (perf_dataTypeClassInstanceCounter
counter in instance.counter) {
 counters_info += " \nName:" +
counter.name + "\n" +
 " avg: " + counter.value.avg + "\n"
+
 " cur: " + counter.value.cur + "\n"
+
 " max: " + counter.value.max + "\n"
+
 " min: " + counter.value.min;
 }
 }
 else {
 counters_info += " No counters." + "\n";
 }
 }
 }
 else {
 counters_info += "No instances." + "\n";
 }
 }
 }
 else {
 counters_info += "No classes." + "\n";
 }

 counters_info += "Intervals:\n" +
 "Start time: " + counter_dat.interval.start_time + "\n" +
 "End time: " + counter_dat.interval.end_time + "\n" +
 "EID: " + counter_dat.eid + "\n";
 }
 }
 else {
 counters_info += "No data returned.";
 }
}

 Managing Virtual Environments 54

Monitoring Alerts
Alerts are notifications that report the system resource allocation problems such as approaching
or exceeding certain limits. Alerts are usually used for monitoring of the virtual environment
health, predicting its performance, or collecting information that can be used to optimize the
virtual environment performance. Use the alertmBinding class to check if a virtual
environment has alerts of any kind currently raised and to retrieve the alert data if it does.

The alert levels are described in the table below.

Alert level ID Description

Green 0 Normal operation. This alert is raised when one of the higher-
level alerts is canceled.

Yellow 1 Moderately dangerous situation. The specified parameter is
coming close (within 10%) to its soft limit barrier.

Red 2 Critical situation. The parameter exceeded its soft limit or came
very close to the hard limit. Depending on the parameter type,
either some process can be killed at any time now, or the next
resource allocation request can be refused.

 Managing Virtual Environments 55

A virtual environment may have multiple alerts raised at any given time. The following function
demonstrates how you can check if a virtual environment has any alerts currently raised, and to
retrieve the alert information if it does. The function accepts the list of virtual environments for
which to check and retrieve the alert information.
/// <summary>
/// Sample function GetAlerts.
/// Retrieves the system alert information for the specified virtual
environment.
/// </summary>
/// <param name="ve_eid">
/// Server ID of the virtual environment to get the alerts for.
/// </param>
/// <returns>A string containing the alert information.</returns>
///
public string GetAlerts(string[] ve_eid)
{
 string list_result = "";
 try {
 // Instantiate the proxy class
 alertmBinding alertm =
(alertmBinding)binder.InitBinding(typeof(alertmBinding));

 // The main input object.
 get_alerts get_alerts_input = new get_alerts();

 // Set virtual environment list.
 get_alerts_input.eid_list = ve_eid;

 // Get the alert information.
 foreach (eventType al_event in alertm.get_alerts(get_alerts_input)) {
 list_result += "Data: \n";

 // Get the alert data.
 resource_alertType res_data =
(resource_alertType)al_event.data.event_data;
 // Read the alert data.
 list_result += " Class: " + res_data.@class + "\n" +
 // Get counter.
 " Counter: " + res_data.counter + "\n" +
 // Get eid.
 " Eid: " + res_data.eid + "\n" +
 // Get instance.
 " Instance: " + res_data.instance + "\n" +
 // Get type.
 " Type: " + res_data.type.ToString() + "\n" +
 // Get current value.
 " Cur: " + res_data.cur + "\n" +
 // Get hard limit.
 " Hard: " + res_data.hard + "\n" +
 // Get soft limit.
 " Soft: " + res_data.soft + "\n" +
 // Get event name.
 "Name: " + al_event.info.name + "\n" +
 // Get count.
 "Count: " + al_event.count.ToString() + "\n" +
 // Get event category.
 "Category: " + al_event.category + "\n" +
 // Get event message.
 "Message: " +
System.Text.ASCIIEncoding.ASCII.GetString(al_event.info.message) + "\n" +
 // Get parameters
 "Parameters: ";
 /* Call the helper function to extract the
 * event message parameter values.
 */

 Managing Virtual Environments 56

 GetParams(al_event.info.parameter, ref list_result);
 }
 }
 catch (Exception e) {
 list_result += "Exception: " + e.Message;
 }
 return list_result;
}

/// <summary>
/// Sample function GetParams.
/// This is a helper function that extracts the
/// alert message parameter values.
/// </summary>
/// <param name="parameter">The name of the parameter.</param>
/// <param name="list">
/// Output. Values.
/// </param>
///
void GetParams(infoType[] parameter, ref string list)
{
 string ss = " ";

 foreach (infoType param in parameter) {
 list += ss + "Message: " +
System.Text.ASCIIEncoding.ASCII.GetString(param.message) +
 " Info name: " + param.name + "\n";

 if (param.parameter != null) {
 GetParams(param.parameter, ref list);
 }
 }
}

Managing Files
Agent SOAP API provides the filerBinding class that can be used in client applications to
manage files and directories on physical servers and in virtual environments, including listing
files and directories, uploading, downloading, copying, moving and removing, searching, etc. In
this section, we will demonstrate how to perform some of the most common file management
operations.

 Managing Virtual Environments 57

Request Routing
Before we delve into the details of the individual file management operations, we have to
discuss an important Agent API feature called Request Routing.

Most of the Parallels-specific methods have the Server ID (eid) input parameter which is used to
specify the virtual environment on which the operation should be performed. For example,
when you start or stop a virtual environment, you pass Server ID as an input parameter (see
Starting, Stopping, Restarting a Virtual Environment (p. 33)). In contrast, methods of the classes
that allow to perform operations on both virtual environments and physical servers don't usually
have this parameter. For example, the filerBinding.list method (lists files and
directories) does not have the eid parameter. So how do you get file listing for a particular
virtual environment? That's where request routing comes in.

Routing

You can tell Agent to route the request to the specified virtual environment and execute it there
instead of executing it on the physical server level. You accomplish this by including the
dst/host (destination host) parameter in the Agent request message header to contain the
Server ID of the target virtual environment. By not including the dst/host parameter in the
message header, you are instructing Agent to perform the operation on the physical server.

We already have a sample class called Binder (p. 14) that implements this functionality. The
InitBinding method of the Binder class instantiates a proxy class and populates the
request message header. The overloaded InitBinding method accepts the virtual
environment Server ID as a second parameter and adds the dst/host parameter to the header.
To route a request to a particular virtual environment, use this method to instantiate a proxy
class passing the target Server ID to it.

The following sample code shows how to create a proxy class object without the request routing
information specified.
vzaenvmBinding env =
(vzaenvmBinding)binder.InitBinding(typeof(vzaenvmBinding));

The following sample uses the request routing feature. The requests initiated by the class
methods will be routed to the specified virtual environment.
string ve_eid = "3b8f950a-981d-b94d-bde1-647df39674f1";
filerBinding filer = (filerBinding)binder.InitBinding(typeof(filerBinding),
ve_eid);

So the question is, when exactly do you use the request routing feature? The rule of thumb is as
follows:

 If a method that you want to use to perform an operation on a virtual environment doesn't
accept Server ID (eid) as a parameter, you have to use request routing.

 If the method has the eid parameter, don't use request routing. If you try to route a request
to a virtual environment by mistake, it most likely will fail with a message saying that the
functionality is not supported.

There are only a few classes that rely on the request routing functionality when the target of an
operation is a virtual environment. Here's the list:

Class name Description

 Managing Virtual Environments 58

computermBinding Computer management. Provides methods for managing
physical servers and virtual environments as if they were
regular physical machines.

filerBinding Provides methods for managing files and directories.

firewallmBinding Firewall management (Linux only).

processmBinding System processes management. Provides methods for
executing a program inside a virtual environment and for
killing system processes.

servicemBinding Services management. Provides methods for managing OS
system services.

usermBinding Provides methods for managing users and groups on physical
servers and virtual environments.

 Managing Virtual Environments 59

Listing Files
The following sample shows how to get a list of files and directories from the physical server.
The path parameter is used to specify the directory (or multiple directories) for which to get
the list of files and subdirectories.
/// <summary>
/// Sample function Listphysicalserverfiles.
/// Lists files and directories on a physical server.
/// </summary>
/// <param name="path">Pathname(s).</param>
/// <returns>A string containing the list of files.</returns>
///
public string Listphysical serverfiles(string[] path)
{
 try {
 string list_result = "";

 // Instantiate the proxy class.
 filerBinding filer =
(filerBinding)binder.InitBinding(typeof(filerBinding));

 // The main input object.
 list2 list = new list2();

 // Set pathnames.
 byte[][] paths = new byte[path.Length][];
 for (int i = 0; i < path.Length; i++) {
 paths[i] = System.Text.ASCIIEncoding.ASCII.GetBytes(path[i]);
 }
 list.path = paths;

 /* Get file listing, then iterate through it and
 * populate a string variable with the results.
 */
 foreach (fileType file in filer.list(list)) {
 list_result += "\n\nName: " +
System.Text.ASCIIEncoding.ASCII.GetString(file.name) +
 "\nSize: " + file.size.ToString() + "\nType: " +
file.type.ToString();
 }
 return list_result;
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

The following sample functions shows how to get a list of files and directories from a virtual
environment. Note that the only difference between this function and the sample function above
is how we create the proxy class object. Here, we use the overloaded binder.InitBinding
method that has the additional eid parameter, which we use to specify the target virtual
environment. As a result, the request will be routed to the specified virtual environment and the
file listing will be obtained from the virtual environment instead of the physical server.
/// <summary>
/// Sample function ListCTfiles.
/// Lists files and directories on a virtual environment.
/// </summary>
/// <param name="path">Pathname(s).</param>
/// <param name="eid">
/// Server ID of the virtual environment.
/// </param>

 Managing Virtual Environments 60

/// <returns>A string containing the list of files.</returns>
///
public string ListCTfiles(string[] path, string eid)
{
 try {
 string list_result = "";

 // Instantiate the proxy class.
 filerBinding filer =
(filerBinding)binder.InitBinding(typeof(filerBinding), eid);

 // The main input object.
 list2 list = new list2();

 // Set pathnames.
 byte[][] paths = new byte[path.Length][];
 for (int i = 0; i < path.Length; i++) {
 paths[i] = System.Text.ASCIIEncoding.ASCII.GetBytes(path[i]);
 }
 list.path = paths;

 /* Get file listing, then iterate through it and
 * populate a string variable with the results.
 */
 foreach (fileType file in filer.list(list)) {
 list_result += "\n\nName: " +
System.Text.ASCIIEncoding.ASCII.GetString(file.name) +
 "\nSize: " + file.size.ToString() + "\nType: " +
file.type.ToString();
 }
 return list_result;
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

 Managing Virtual Environments 61

Uploading a File
The filerBinding class provides the upload method for uploading files to the physical
server or a virtual environment. The maximum block size that you can upload in a single
method invocation is 512 kilobytes. If uploading a file larger than 512K, you'll have to read the
file data in 512K or smaller blocks and transfer each one individually, i.e. one method
invocation per data block. The first method invocation creates a file on the destination server
and adds the first data block to it. The rest of the source data can be appended to or inserted at
the desired position in the destination file. The following sample shows how to upload a file
larger than 512K in size.
/// <summary>
/// Sample function UploadFile.
/// Shows how to upload a file to a virtual environment.
/// </summary>
/// <param name="source">Source file name and path.</param>
/// <param name="destination">
/// Destination file name and path.
/// </param>
/// <param name="eid">Server ID of the target virtual environment.</param>
/// <returns>"OK" or error info.</returns>
/// <example>
/// <para>
/// Example: UploadFile(@"c:\share\packets.txt",@"/tmp/pack15")
/// </para>
/// </example>
///
public string UploadFile(string source, string destination, string eid)
{
 try {
 filerBinding filer =
(filerBinding)binder.InitBinding(typeof(filerBinding), eid);

 /* An offset in the destination file at which
 * to insert the data. The value of -1 means
 * to append the data to the file.
 */
 int offset = -1;

 // Set the read buffer size (in bytes).
 // The maximum possible block size is 512K.
 long readBlockSize = 524288;

 // The main input object.
 upload upload_input = new upload();

 /* You can upload more than one file in a single call.
 * Here we upload just one file.
 */
 upload_input.file = new uploadFile[1];

 // Initialize the wrapper for the source file path.
 FileInfo info = new FileInfo(source);

 // Open the file for reading.
 FileStream fstream = new FileStream(source, FileMode.Open,
FileAccess.Read);

 // Read the file data in 512K blocks.
 long remaining_bytes;
 while ((fstream.Position < fstream.Length)) {

 remaining_bytes = fstream.Length - fstream.Position;

 Managing Virtual Environments 62

 // Initialize the buffer for the current data block.
 byte[] readBlock;
 if (remaining_bytes > readBlockSize) {
 readBlock = new byte[readBlockSize];
 }
 else {
 readBlock = new byte[remaining_bytes];
 }

 // Read the data block into the buffer.
 fstream.Read(readBlock, 0, readBlock.Length);

 /* When adding data to an existing file,
 * the "force" option must be set. Otherwise, the
 * upload will fail.
 */
 upload_input.force = new object();

 // Set the offset at which to start writing.
 upload_input.file[0] = new uploadFile();
 upload_input.file[0].offsetSpecified = true;
 upload_input.file[0].offset = offset;

 // Set the destination file name and path.
 upload_input.file[0].path =
System.Text.ASCIIEncoding.ASCII.GetBytes(destination);

 // The block of data to write in this iteration.
 upload_input.file[0].body = readBlock;
 upload_input.file[0].size = readBlock.Length;

 // Upload the data block.
 filer.upload(upload_input);
 }

 fstream.Close();
 return "OK!";
 }
 catch (Exception e) {
 return "Exception: " + e.Message;
 }
}

Downloading a File
Downloading a file from the physical server or a virtual environment is similar to uploading a
file described in the previous section. To download a file, you must specify the file name and
path on the source server. For files larger than 512K, the file data must be transferred in 512K
(or less) data blocks. The received data can be written to a file on the client machine or
processed any other way that your client application may require.

 Managing Virtual Environments 63

Package Management
The following C# sample illustrates how to install a software package into a virtual
environment.
private System.Object InitBinding(System.Type bindingType)
{
 string typeName = bindingType.Name;
 System.Object Binding =
 bindingType.GetConstructor(System.Type.EmptyTypes).Invoke(null);
 bindingType.GetProperty("Url").SetValue(Binding, edUrl.Text, null);
 VZA.packet_headerType header = new VZA.packet_headerType();
 header.session = m_sid;
 header.target = new string[1];
 header.target[0] = typeName.Replace("Binding", "");
 bindingType.GetField("packet_header").SetValue(Binding, header);
 return Binding;
}

private vzapackagemBinding pkgm;

// A sample function illustrating how to install a package
// into a virtual environment.
public string installPackage(string ve_eid, string pkg_name, string version)
{
 try
 {
 if (pkgm == null) pkgm =
(vzapackagemBinding)InitBinding(typeof(vzapackagemBinding));

 // Instantiate vzapackagem.install operation object.
 // Please note that the class install3 may have a different
 // numeric suffix in your version of proxy classes.
 install3 install = new install3();

 // The package information must be specified using the
 // appropriate type:
 // --if you are installing a standard template, use
package_std_vztemplateType.
 // --for an EZ-template installation, use package_vztemplateType.
 // For the list of all supported package types, see subtypes of
packageType in
 // the Parallels Agent XML reference guide.
 // In this example, we are installing a standard application template.
 package_std_vztemplateType package = new package_std_vztemplateType();
 package.name = pkg_name;
 package.version = version;

 // The Server ID of the target virtual environment.
 install.eid = ve_eid;

 // Initialize the "installation_package" array.
 install.installation_package = new
pkg_setup_cmdTypeInstallation_package[1];

 // Instantiate the first element of the array.
 install.installation_package[0] = new
pkg_setup_cmdTypeInstallation_package();

 // Install the package.
 // Since package information parameter is defined as a "choice"
element
 // in the schema, it must be specified using the abstract "Item"

 Managing Virtual Environments 64

 // member. This is a standard way of handling "choice" XSD elements
 // in SOAP/C#.
 install.installation_package[0].Item = package;
 pkgm.install(install);

 return "OK";
 }
 catch (Exception e)
 {
 log("EXCEPTION:" + e.Message);
 log("EXCEPTION_DETAIL:" + e.InnerException);
 }
 return "ERROR";
}

private void pkgmInstall_Click(object sender, EventArgs e)
{
 log("Installation package test: ");
 log(installPackage("0f5cb98c-f9d2-d84c-aab9-b5c8c70ba618", "mod-perl",
"00000000"));
}

 65

Index

A
Agent SOAP API • 8

C
Certificates Policy Preparation • 14
Choosing a Development Project • 10
Classes, Instances, Counters • 49
Cloning a Virtual Environment • 43
Complete Program Code • 22
Configuring a Virtual Environment • 37
Connection URL • 18
Creating a Virtual Environment • 28
Creating a Simple Client Program • 13

D
Destroying a Virtual Environment • 34
Development Platforms • 8
Documentation Conventions • 5
Downloading a File • 62

E
Errors and Resolution • 12

F
Feedback • 6

G
General Conventions • 6
Generating Proxy Classes From WSDL • 11
Getting a Performance Report • 50
Getting Server ID From Name • 32
Getting Virtual Environment Configuration

Information • 36

I
Installation • 9
Instantiating Proxy Classes • 14
Introduction • 7

L
Listing Files • 59
Logging in and Creating a Session • 18

M
Main Program File • 13

Managing Files • 56
Managing Virtual Environments • 27
Migrating a Virtual Environment to a Different

Host • 45
Modifying DNS Server Assignment • 42
Modifying Hostname • 39
Modifying IP Address • 37
Modifying QoS Settings • 41
Modifying Virtual Environment Name • 40
Monitoring Alerts • 54
Monitoring Performance • 48

P
Package Management • 63
Preface • 5

R
Request Routing • 57
Retrieving a List of Virtual Environments • 20

S
Shell Prompts in Command Examples • 6
Starting, Stopping, Restarting a Virtual

Environment • 33
Suspending and Resuming a Virtual

Environment • 35

T
Typographical Conventions • 5

U
Uploading a File • 61

W
What is Parallels Agent? • 7
Writing Your First Program • 10

	Preface
	Documentation Conventions
	Typographical Conventions
	Shell Prompts in Command Examples
	General Conventions

	Feedback

	Introduction
	What is Parallels Agent?
	Agent SOAP API
	Development Platforms
	Installation

	Writing Your First Program
	Choosing a Development Project
	Generating Proxy Classes From WSDL
	Errors and Resolution

	Creating a Simple Client Program
	Main Program File
	Certificates Policy Preparation
	Instantiating Proxy Classes
	Connection URL
	Logging in and Creating a Session
	Retrieving a List of Virtual Environments
	Complete Program Code

	Managing Virtual Environments
	Creating a Virtual Environment
	Getting Server ID From Name
	Starting, Stopping, Restarting a Virtual Environment
	Destroying a Virtual Environment
	Suspending and Resuming a Virtual Environment
	Getting Virtual Environment Configuration Information
	Configuring a Virtual Environment
	Modifying IP Address
	Modifying Hostname
	Modifying Virtual Environment Name
	Modifying QoS Settings
	Modifying DNS Server Assignment

	Cloning a Virtual Environment
	Migrating a Virtual Environment to a Different Host
	Monitoring Performance
	Classes, Instances, Counters
	Getting a Performance Report

	Monitoring Alerts
	Managing Files
	Request Routing
	Listing Files
	Uploading a File
	Downloading a File

	Package Management

	Index

