Parallels

Parallels Agent

Programmer's Guide

1.0

|| Parallels

(c) 1999-2008

ISBN: N/A

Parallels

13755 Sunrise Valley Drive
Suite 600

Herndon, VA 20171

USA

Tel: +1 (703) 815 5670
Fax: +1 (703) 815 5675

© 1999-2008 Parallels. All rights reserved.
Distribution of this work or derivative of this work in any form is prohibited unless prior written permission is
obtained from the copyright holder.

Contents

Preface 6
F A aTo U | N LS T o [PPSR 6
WhO Should REad THiS GUITEcueiuiiiiiiiciieiee ettt bbbt e e e 6
Organization Of THIS GUITEc.uiiiiii it be et b e bbbt ne e 7
DOCUMENTALION CONVENTIONS.c.titiitiiti sttt sttt ettt ettt et b e sbe bt b e e se e st e beebesbesbeabesbesbeebeeneeneennens 7

Typographical CONVENTIONS.cccvciiiiieiieie ettt r st e et resbesbesbesre e e eneeseenes 7
Shell Prompts in Command EXAMPIEScccvceiiiiiiicieiiie et sr s 8
GENETAL CONVENTIONSiiviiiitiiesietisies ettt ettt ettt st st e ettt e be st e s e ne et b neeee 9
FEBADACK ...ttt bbbt b ettt 9

Getting Started 10

PArallels AGENT OVEIVIBWcuiiiiieieie ettt sttt b ekt e e e b et s bt b e e be e bt e se et e nbesbe st e ebe et e e e et es 11
PArallels AGENT APt e e bbbt b et sbe bbbt et e 12
SYSTEIM REGUITEIMIENTSeetite ittt ettt ettt sttt ettt et bt bt bt bt et e e e b sb e s b e sbeeb e e s e emsesbeseeebesbesbeebesneaneenennas 13
INSEAIIALION ...ttt bbbttt ettt b et e b e e 13
Starting, StOpPINg, RESTAITING.......cceiiiiiie i sr et re e be e e e eneesnens 14
LoCation OF XSD N0 WSDL......cucoiiiiiiiieiciesie ettt sttt st ettt sneesnesnerens 15
A 1= LN (o] a1 (=Tt (SR 16
(O] T o 11V USRS 17
AN 11 1= L oL o] T @0 01T £ 18
REAIMS ...ttt sttt e st e e st e b e R Rt R e Rt et et e R nRe R nEe Rt re e e enrees 18
F AN 11T 2 LA o] o OSSR 19
TEIMINOIOGY ...ttt b e bt h bbbt eb e s bt b e s et e bt sb e st eb e sb et eb et et e abe e et e abe et 19
Using XML API 21
KIMIL APT BASICS. . vvvevtveieieste et ste et ste et st et st et b et s b e s e e besb e s e ebe st e s e e b e se e b e e bene et e abene et e abe st ebeabeneebeabenearens 21
XML SCRBIMA ...ttt bbb bbb bbbttt ettt b ne e 22
AN 1= LY =TT Vo TSRS 22
g o] g P a0 | T oo SR 34
Creating a Simple Client APPIICALIONccviieiece e e 35
CONNECTING 10 AGENT ...ttt bbb bbb bbbt et b et b et ans 36
LOGUING TN 1ottt bbbt bbb E bbbt bbb r b 38
Retrieving a List 0f Virtu0zzo CONLAINETS..........coviiiiiiiieiie et 41
Restarting @ Virtu0Zz0 CONAINETccuiiiiiiiiie ittt bbbt sae e e 42
SUMIMEIY <.ttt ettt h ek e e ke e e be ekt o Re e o R e e ehe e b £ 2 a b £ ea ke es b e eb e e eb e e e be e nbeebeamneebeenbeenbeanbeans 43
The Complete Program COOEcciviieiieieiese ettt sr e e s b e resneere e e eneeseens 44
Login and Session IMANAGEIMENLc.eieiieieeeieieste e ste e e et e e e sre st e tesaeetee e ebeseesbestesseaseeseeneereeseeneeses 46
Retrieving Realm INFOrMAation............cccviiiiiiiicic et 47
oo o 13 To N 10 50
TR (o] SO 52
Creating and Configuring Virtu0zzo CONLAINETSccccvveiieierieierese e sesee e eee e sae s sre e eneeseeseeseeseens 53
Getting a List of Sample ConfigUIatioNScoveiiiriiiiiieir s 54
Getting @ LiSt OF OS TEMPIALEScuviviiiiiiiiec e 57
Populating Container Configuration StrUCTUIEcoeiiiiiiiiieiieie e 58
Creating @ Virtu0ZZ0 CONAINETcouiiiiiiieitieieeeeee ettt et bbb be et e e e e 60
Retrieving Container CoNfIQUIAtIONcoiiiiiiiiieee et 62
Configuring @ Virtuozzo CONLAINETccuiiiiirieieiieieeie ettt e bbb bt 63

Destroying a Virtu0Zz0 CONTAINETccviieiireieiieiesie e e seeeessesie e ste e sssesae e e e stesresresnseneeaeseens 68

Contents 4

PErfOrMANCE IMONITOT ... cveitiietiitt ettt ettt s bt e et bbbt b e ne et b ene e 68
ClasSeS, INSLANCES, COUNTEIScueverireerietirieiete ettt ettt ese sttt seese bt esesbe e ebenbeseebenteneans 69
Getting a Performance REPOIcciviiiiiieieeee ettt st saeene e na e e e e s 80
ReceiVINg PeriodiC REPOIMScuviieiiie ettt ettt re e ene e e s s 82
Monitoring MUltiple ENVIFONMENTScoviiiiiieiise ettt 84

YT gL E3E Lo o N [o SRS 84

REGUEST ROULING. ¢..c. etttk bbb kbbbt ettt 87

Using SOAP API 90

L1000 1o 4SSO 90
OVEBIVIBW ...ttt sttt sttt ettt s bt s bt s bt b8kt s bbbt s ettt s ettt n b et ann 90
G YA =T LN =L PR OP PR PPRTR 91
LIMITAEIONS ...ttt b e e b et b e et b e et b e et bbb et ena et 91
Generating Client Code fromM WSDL ..ottt 91

Creating a Simple Client APPIICALIONc..cv i e 91
Step 1: Choosing & DeVEIOPMENT PrOJECTcouciiiiiirieieicre et 92
Step 2: Generating Proxy Classes FrOmM WSDLco.coiiiiiiininrese s 92
Step 3: MaIN Program FilE..... oottt sb et be st e e e 93
Step 4: RUNNING the SAMPIEoouiiiie e b 100
Complete Program COOEccoeeieieie sttt ettt b b e bbbt es e e e e b e e seeneas 101

Developing Agent SOAP CHIENTS........ccviiiiicieieie ettt e st sr et e besresteeneenee e enes 106
SOAP AP REFEIENCEoveviieiieiiieeete ettt ettt e sttt en bt s e be e ans 107
(@] o To] gt I Tl a0 SRS 108
Elements With N0 CONENL...........oiiiiieiie e bbb 109
Base64-eNCOUEH VAIUES. ..ottt bbb 110
LI L= LU OSSPSR PP 110
Get/Set Method Name CONFIICEcco i 111

Managing Virtu0ZzZ0 CONTAINETScoueiiirieiitirieiiete ettt sb ettt sb bbbt sb bbb 112
Creating 8 CONTAINETcuiiieiite ettt b et b et b e et b e e bt b e et e b b ebe b nnere s 113
Starting, Stopping, Restarting 8 CONTAINETcoouiiiiiiiee e 116
DeStrOYiNGg @ CONTAINETeiieiiiieiteeie ettt sttt b e bt et eesb et beebe e s e enr et e e eneas 118
Suspending and ReSUMING & CONLAINEToiiiiiiiieieieree e bbb 119
Getting Container Configuration INfOrmationccccceiiiiinie i s 120
ConfigUIING @ CONTAINETc.veieiieciee ettt st te e be et e et e e b e st e besbesteeneeneerenes 121
Cloning @ VIrtu0ZZO CONTAINETcveiueieesiseeeeeeeeieseese e steste e e e e saesae e sresresneenaeseeeeseesrenees 127
Migrating a Container to a DIfferent HOSt..........ccccvviiiiieicce e 129
T (U] T @] 0T 14T) TSR 132
PerformManCe MONITOT.........cviiiieie ettt e e saesbestesbesreeneenee e eneas 147
MONTEOTING ALBITS ...ttt bbbt bbbttt 154

Other SOAP Clients and Their KNOWN ISSUESciviiriiieieriinie et ee e see st seesee e s 157
VISUAI BASIC NET ..ottt ettt bttt s bbbt ne et 157
VISURL JH INET ..ottt ettt bbbttt e bttt st ne e 157
APACHE AXIS 1.2 TOF JAVA. ...ccueiee ittt ettt bbb e e e 158

B0V o] (=1 o] 1o TSRS 159

Advanced Topics 161

WA [=1 a1 A @0) 1o U= o] PSSP 161

VOCADUIAIY ...ttt bbbt bbbkt b etk e bbbt e bt ekt eb et ekt e b e e et e ebe e ebeebe et 161

INternal REQUESE SCREAUIETcc.iiiiiic bbb et eere s 162
Message Classification and PriOritieS.........c.ccoviiriiiiiiciieee e 162
P00 aNd SINGIE OPEIALOISeuieiieieie ettt bbbt e bbbt b ene e e eneas 163
DYNAMIC LIMITS ...ttt bttt bbbt et e e b e besbeebe e b e et ene e e ennas 164
L@ 31U TSRS UPP R 164

Contents 5

Index 166

CHAPTER 1

Preface

In This Chapter

F A o011 I AT TV Lo (=TSRRI 6
WhOo Should Read ThiS GUIE..........cieiiceiiiiiiiiie ettt sttt e e s bae e e s sabaee s 6
Organization of ThiS GUIAE.........c.ciuiiiiie e 7
Documentation CONVENTIONS.........ccuiiiivie ittt et sre e s bes e srbe e et as e ere e s sabe s s sbeeesaeee e 7
[T STcT0 [Y- T TP 9

About This Guide

This guide describes how to develop client applications using Parallels Agent API. This
documentation exists as HTML, HTML Help, and Adobe Acrobat documents. You can browse
the HTML version of this document on the Web. A link to the document is available on the
Documentation page on the SWsoft site.

Who Should Read This Guide

Primary audience for this guide is anyone developing Parallels Agent client applications. To use
this book you should have UNIX or Windows system administration experience and a good
knowledge of Virtuozzo Containers software. Some programming skills are required, including
a good knowledge of XML and XML Schema language (also referred to as XML Schema
Definition or XSD), and optionally a knowledge of SOAP and one of the languages supporting
it.

Preface 7

Organization of This Guide

This guide is organized into the following chapters:
Chapter 1, Preface. Provides information about this guide.

Chapter 2, Getting Started. Provides an overview of the Parallels Agent software. Includes
installation instructions. Talks about Parallels Agent architecture. Lists communication
protocols that can be used to communicate with Agent. Introduces user authentication concepts.
Provides a list of the most commonly used Agent terms and explains their meaning.

Chapter 3, Using XML API. This chapter is intended for those who would like to develop client
applications using XML API. It begins with the explanation of the XML API basics. It then
provides a complete example of how to create a simple client application in Perl. The rest of the
material describes how to perform the most common Parallels Virtuozzo Containers
management tasks and provides XML code samples.

Chapter 4, Using SOAP API. This chapter is intended for the developers who would like to
develope client applications using SOAP API. It begins with the SOAP API overview, its key
features and limitations, and provides information on how to generate client code from WSDL
documents. It then provides step-by-step instructions on how to create a simple client
application in C#. It continues with the description of how to avoid certain problems and how to
handle some of the programming issues. It then describes how to perform the most common
tasks providing C# code samples. It also provides information about other SOAP clients and
their known issues. A troubleshooting information is included at the end of the chapter.

Chapter 5, Advanced Topics. This section describes some of the advanced Agent features that
you can use to fine-tune your client applications.

Documentation Conventions

Before you start using this guide, it is important to understand the documentation conventions
used in it. For information on specialized terms used in the documentation, see the Glossary at
the end of this document.

Typographical Conventions

The following kinds of formatting in the text identify special information.

Formatting Type of Information Example
convention
Triangular Step-by-step procedures. You can To create a Container:

Bullet(>) follow the instructions below to
complete a specific task.

Preface 8

Special Bold

Italics

Monospace

Preformatted

Monospace
Bold

CAPITALS
KEY+KEY

Items you must select, such as menu
options, command buttons, or items in
a list.

Titles of chapters, sections, and
subsections.

Used to emphasize the importance of a
point, to introduce a term or to
designate a command line placeholder,
which is to be replaced with a real
name or value.

The names of commands, files, and
directories.

On-screen computer output in your
command-line sessions; source code in
XML, C++, or other programming
languages.

What you type, contrasted with on-
screen computer output.

Names of keys on the keyboard.

Key combinations for which the user
must press and hold down one key and
then press another.

Shell Prompts in Command Examples

Go to the Resources tab.

Read the Basic Administration chapter.

These are the so-called EZ templates.

To destroy a Conainer, type vzctl
destroy ctid.

Use vzctl start to start a Container.

Saved parameters for
Container 101

rpm -V virtuozzo-release

SHIFT, CTRL, ALT
CTRL+P, ALT+F4

Command line examples throughout this guide presume that you are using the Bourne-again
shell (bash). Whenever a command can be run as a regular user, we will display it with a dollar
sign prompt. When a command is meant to be run as root, we will display it with a hash mark

prompt:

Bourne-again shell prompt $

Bourne-again shell root prompt #

Preface 9

General Conventions

Be aware of the following conventions used in this book.

= Chapters in this guide are divided into sections, which, in turn, are subdivided into
subsections. For example, Documentation Conventions is a section, and General Conventions
is a subsection.

= When following steps or using examples, be sure to type double-quotes ("), left single-
quotes (*), and right single-quotes (') exactly as shown.

= The key referred to as RETURN is labeled ENTER on some keyboards.

The root path usually includes the Zbin, /sbin, Zusr/bin and Zusr/sbin directories, so
the steps in this book show the commands in these directories without absolute path names.
Steps that use commands in other, less common, directories show the absolute paths in the
examples.

Feedback

If you spot a typo in this guide, or if you have thought of a way to make this guide better, we
would love to hear from you!

The Parallels documentation forum is the ideal place for your comments and suggestions. It is
regularly monitored by the members of the Parallels technical documentation department, so it
is likely that you will receive a reply to your post before long.

Note that new users will be asked to fill in a short registration form before being able to post.
Registering will allow you to participate not only in the documentation forum discussions, but
in all the other Parallels forums as well.

CHAPTER 2

Getting Started

In This Chapter

Parallels AQENt OVEIVIEWccccviiiiiic ittt ettt sttt sbe s ae e e 11
SYSTEM REQUITEIMENTS.......viitiitiieiieeee ettt 13
F N (= N o 1 =T (U R 16
(070 00 T=Tot 1LY SRS 17
AULNENTICATION CONCEPLS ...ttt 18

B 01T] oo PSS URSRRN 19

Getting Started 11

Parallels Agent Overview

Parallels Agent is a server-side software that enables the development of client applications that
can manage and monitor Parallels Virtuozzo Containers.

Virtuozzo Containers can be managed through standard tools that come with Parallels Virtuozzo
Containers, including the command line and GUI tools. With Parallels Agent, you can build
your own custom applications that communicate with Parallels Virtuozzo Containers directly.
Your applications can provide a custom interface, functionality, and logic that are not available
in the standard management tools. The functionality provided by Agent can also help you
programmatically integrate Parallels Virtuozzo Containers with external software products.

The following list describes the most common operations that can be performed through
Parallels Agent:

= Create and destroy a Virtuozzo Container.

= Start, stop, restart a Container.

= Migrate, clone, move a Container to a different location.

= Create Container backups.

= Get Container status and configuration information.

= Modify Container configuration parameters.

= Obtain current statistical data and resource usage information.

= Monitor system performance.

= Receive notifications about critical system events, directly or via e-mail.
= Set up Virtuozzo Virtual Networks.

= Manage Parallels Infrastructure.

= Install, update, and remove Virtuozzo templates.

= Manage operating system services.

= Manage devices.

= Manage files and directories.

= Manage users and groups.

Getting Started 12

Parallels Agent API

Parallels Agent provides two APIs that you can use to create client applications:
XML API

The XML API is a set of rules by which clients can exchange information with and request
actions from Agent. The XML API protocol is based on XML messages. A message is an XML
document composed of XML elements that specify the request or response parameters. Each
message is defined using the XML Schema 1.0 standard.

With XML API, you compose an XML request in accordance with the schema and send it to
Agent using SSL or other supported protocol. Agent processes the request, takes the appropriate
action, and sends back an XML response containing the data that resulted from the request.
Your application then parses the received XML to extract the data.

The XML API is described in detail in the Using XML API chapter (see page 21).
SOAP API

The Parallels Agent SOAP API is a Web service based on the SOAP 1.1 and WSDL 1.1
standards. With SOAP API, you build your client applications using one of the SOAP clients
that can access a Web service. This can be a SOAP client that can generate proxy classes from
the provided WSDL documents, such as Visual Studio .NET. You can also create your
programs using one of the scripting languages with SOAP support, such as Perl and
SOAP::Lite.

You make an API call by invoking a proxy class method in a language native format.
Transparently to the programmer, the SOAP client transforms the method invocation into a
SOAP message and sends it to Agent over HTTPS. Agent processes the message, takes the
appropriate action, and sends a response (also a SOAP message) containing the data back to the
SOAP client. The client creates an appropriate object (an instance of a class) and populates it
with the data from the received SOAP message. You then extract the data from the object as you
usually do in the programming language that you are using.

The SOAP API is described in detail in the Using SOAP API chapter (see page 90).

Both the SOAP API and the XML API share the same Schema, so they essentially provide the
same functionality. The basic format of the input and output data is also the same in both APIs.
The difference is as follows:

= The XML API provides a complete set of interfaces to perform the full range of Parallels
Virtuozzo Containers management and monitoring tasks.

= The SOAP API provides a similar set of functions, with some limitations. Specifically,
SOAP clients cannot invoke Agent services that require the asynchronous request
processing capability. This includes the services that provide performance reports on a
periodic basis, progress reports, and event notifications. You can still obtain some of that
data using the on-demand functionality. For example, you can obtain the most recent
performance report, or retrieve performance data from a history database.

The XML Schema on which both APIs are based is described in detail in the Parallels Agent
XML API Reference guide, which is a companion to this book. You can use it as a reference when
programming with either API.

Getting Started 13

System Requirements

Installation

Server side

Parallels Agent software is included in the Virtuozzo Tools package, which comes with
Parallels Virtuozzo Containers software. Virtuozzo Tools are installed on your server by default
during Virtuozzo Containers installation. If the Virtuozzo Tools package is not installed on you
server, run the Virtuozzo Containers installation program again and choose the Virtuozzo Tools
installation option.

When Agent is installed on your server for the first time, you will need to know the password of
your system administrator (such as root on Linux or Administrator on Windows) in
order to connect to it from your client program. System administrator is by default granted all
access rights in Agent, which means that the user can execute any of the Agent API calls and
access any of the Virtuozzo Containers on the Hardware Node. You can add more users with
specific access rights later using Virtuozzo Tools or programmatically through Agent.

Client side

The only software that you'll need on your client machine is the development environment of
your choice. No additional client software is required.

To run the XML API samples provided in this guide, you will need Perl installed on your
development machine.

To run the SOAP API samples, you'll need Microsoft Visual Studio .NET and Microsoft .NET
Framework installed.

For more information and additional system requirements, please also see the Using XML API
(see page 21) and Using SOAP API (see page 90) chapters respectively.

Getting Started 14

Starting, Stopping, Restarting

Before creating and running your client applications, make sure that the Parallels Agent on your
server is installed and running properly.

A on Linux, the vzagent_ctl command line utility is used for starting, stopping, restarting,
and getting the current status of Parallels Agent. The command is executed on the server where
Agent is installed. The available options are:

vzagent ctl start
vzagent_ctl stop
vzagent_ctl restart
vzagent_ctl status

In the following example, the vzagent_ctl status command reports that Agent is
functioning properly:

[root@dhcp0-190 ~]# vzagent ctl status

vzagent (pid 31615 29644 25012 22861 8362 7073 7046 7036 7035 7029
7028 7026 7025 7023 7021 7019 7018 7017 7016 7013 7012 7011 7010 7009
7008 7007 7006 7004 7003 7002 7001 7000 6999 6998 6997 6996 6995 6994
6993 6992 6991 6990 6989 6988 6987 6986 6985 6984 6632) is running. ..
[root@dhcp0-190 ~]#

When Agent is stopped, the output of the same command will be as follows:

[root@dhcp0-190 ~]# vzagent ctl status
vzagent is stopped

If something is wrong with Agent, the output may contain additional messages describing the
problem. In such a case, try restarting the Agent service using the vzagent_ctl restart
command:

[root@dhcp0-190 ~]# vzagent ctl restart

Shutting vzagent: [oK]
vzaproxy: no process killed

Stopping slapd: [OK 1]

Checking configuration files for slapd: [OK]
Starting slapd: [OK]

Starting vzagent: [OK 1]
[root@dhcp0-190 ~]#

on Windows, Agent runs as a Windows service. You can manipulate it by going to the
Services console which is located in the Control Panel / Administrative Tools folder, and
selecting the VZAgent service from the list.

Getting Started 15

Location of XSD and WSDL

The Parallels Agent XSD files are not included in the Parallels Virtuozzo Containers
distribution. Instead, the XML Schema is documented in the Parallels Agent XML Reference
guide, which is a companion to this book. The guide provides specifications and descriptions of
the data types, the request and response messages, and includes XML code samples. Please use
it as a reference when programming with either the XML or the SOAP API.

When programming with the SOAP API, you'll need the location of the WSDL documents in
order to generate proxy classes. The WSDLs can be found at the location that uses the following
format, where VERSION is the Agent protocol version number:
http://www.swsoft.com/webservices/vza/VERSION/VZA wsdl

The URL to the current version 4.0.0 is as follows:

http://www.swsoft.com/webservices/vza/4.0.0/VZA wsdl

Getting Started 16

Agent Architecture

Host OS5
Agent
Diractor Operator |:|
Oparat{_:r Operator Operator
Connection Connection Connection

Client Client Client
Application Application Application

Figure 1: Agent Architecture

Parallels Agent is not a single executable or a single process. It is a combination of processes,
communicating with each other by means of sockets or pipes. The core entities of Agent
architecture are operators and directors.

A director is responsible for message routing inside Agent. It determines which internal Agent
component should serve an incoming request and to which client a particular reply should be
sent.

An operator is a process that is forked or spawned from a director process. There's a set of
Agent operators, each of which provides a specific type of functionality. For example, the
vzaenvm operator provides the functionality for managing Virtuozzo Containers, the
vzarelocator operator provides the functionality for migrating a Container, etc. The
diagram above illustrates the Agent component structure. A client connects to Agent through the
operator Connection (a special operator, which is created for every client connection and which
serves as gateway between a client and a director). The client sends XML messages to the
director. Based on the information provided in the request, the director determines the operator
that the message should be sent to for processing. The operator processes the message, takes the
appropriate action, and generates a reply which is then routed back to the client.

The operators are divided into four major groups:

Getting Started 17

= On-demand operators. These operators are handling synchronous requests (“one request,
one reply"). An on-demand operator is invoked by the director exactly once per request.
Once the operator is invoked, it processes the request, takes the appropriate action, and
sends the results back to the client. The majority of the Agent API requests are targeted at
and processed by the on-demand operators.

= Periodic Operators (collectors). These operators are collecting statistical data on a periodic
basis and can send it to the client at the specified time intervals at the client's request. These
operators use asynchronous messaging (“one request, many replies™).

= Event Reporters. Event reporters monitor the system for critical system events, such as
server configuration changes or server status changes. These operators are subscription-
based, meaning that the client subscribes to the event notification service and the operator
notifies the client (directly or via e-mail) every time an event takes place. The client can
cancel the subscription at any time.

= System Operator. This operator provides some essential system functions. It is used to log
on to Agent, manage Agent configuration, see the state of the operators and directors, verify
Agent version, retrieve vocabulary, subscribe to an event notification service, and to
perform some other system tasks.

Parallels Agent API consists of interfaces that provide access to their respective server-side
operators. There's one API interface for each operator. In this guide, we will discuss some of the
most commonly used operators and interfaces. For the complete list of interfaces and the
functionality that they provide, see the Parallels Agent XML Reference guide.

Connectivity

The following table describes the connection types and protocols that your client program can
use to communicate with Parallels Agent. The recommended options are indicated in the
Description column.

Connection Description

SSL over TCP/IP This is the recommended option for permanent connections. Agent
is listening on port 4434 for incoming SSL connections.

TCP/IP Plain TCP/IP connection. No encryption is used so this connection
should be used with care. Agent is listening on port 4433 for
incoming TCP/IP connections.

Unix Domain sockets Unix-type connectivity. No encryption is used with this
connection type.

Named Pipes Windows Named Pipes. No encryption.

SOAP over HTTPS Web Services clients.

SSH (deprecated) This connection type was used in the previous versions of

Virtuozzo software. It is retained for compatibility purposes only
and is not officially supported.

Getting Started 18

Authentication Concepts

The first thing that a client program must do is log in to Agent using a valid user name and
password. Agent uses this information to verify that the user exists in the user database (called
authentication database) and that the supplied password is valid. If the user is in fact who he or
she claims to be, the user security settings are retrieved from the database and the values stored
in it are used to determine the user access rights. Agent uses the following authentication
databases:

= System Authentication Database. This is the user registry of the host operating system. This
basically means that you can log on to Agent using an account that exists in the operating
system of the Hardware Node. In fact, when Agent is first installed, the only account that
you can use to log on to it is the system administrator account, such as the root user in
Linux or the Administrator user in Windows. By default, the host system administrator
is granted all access rights in Agent, meaning that the user can execute any of the Agent API
calls, and that the user has full access to the Hardware Node and all of its Virtuozzo
Containers.

= Parallels Internal Authentication Database. Virtuozzo Containers software comes with it's
own internal authentication database. This database is used to store the Virtuozzo and Agent
specific authentication information. For example, the built-in security roles used in
Virtuozzo Tools are stored in this database. You can use this database to store your own
Agent users. In addition, the database is used to store the Agent specific security profiles
(permissions and access rights) for the users that are stored in the System Authentication
Database (described above) and for the external users (described below).

= External Authentication Database (LDAP-compliant directory). The third authentication
database type is an external LDAP-compliant directory, such as Active Directory or ADAM
on Windows, or OpenLDAP on Linux. Agent can perform user authentication against an
existing directory. This gives you flexibility to use existing user databases without
duplicating the users in the Parallels Internal Database. The only thing that you will have to
do is to create Agent security profiles for these users, which can be done through Virtuozzo
Tools or programmatically through Agent. The security profiles will be stored in the Agent
Internal Database and will be internally linked to the user accounts stored in the external
LDAP directory. This way, you can authenticate a user against an external LDAP directory
but the authorization of that user (determining the user access rights) will be performed
using the user security profile in the Parallels Internal Database.

Realms

When working with the Parallels Agent API, you'll see a parameter named realm in the user
authentication and authorization related calls. A Realm represents an authentication database.
It's a definition that consists of the database name, the connection parameters, and the database
ID, which is called Realm ID. Realm definitions are stored in the Agent configuration on the
Hardware Node. Before you can use an authentication database, it must be defined as a Realm
in the Agent configuration. At least two Realm definitions are created at the time the Agent
software is installed: the System Realm and the Internal Realm (see page 18). If you are
planning on using an external LDAP directory as your user database, you will have to create a
Realm representing it first. For more info and examples, please see the Login and Session
Management section (on page 46).

Getting Started 19

Authorization

Authorization in Parallels Agent is based on the concept of security roles. A security role is
identified by its unique name and contains a list of Agent tasks that it is allowed to perform. An
administrator would first create a security role granting the desired Agent access rights to it. An
administrator would then create a role assignment. Role assignment is a logical grouping of
users belonging to the same security role. Role assignment has a property called scope. A scope
is the logical area of a Virtuozzo system where this role assignment is allowed to operate. Scope
examples include the entire Hardware Node together with Virtuozzo Containers hosted by it, a
particular Virtuozzo Container, or a group of Containers.

For example, you can create a security role that can start, stop, and restart a Virtuozzo
Container. You can then create a user (or multiple users) and add them to that role. At the same
time, you create a scope containing a list of some existing Virtuozzo Containers and select it to
be the scope of that role assignment. As a result, your user(s) will be allowed to start, stop, and
restart the Containers specified in the scope. They will not be allowed to perform any other
operations, and they will not have access to other Containers that may exist on the same host.

Terminology

This section describes some of the Agent terminology. Please take a moment to familiarize
yourself with it so that you can use the documentation efficiently. The table below describes the
commonly used terms:

Term Description

Server We use the term server to identify any computer, physical or
virtual, in the Agent infrastructure. When we talk about a
physical machine hosting Virtuozzo Containers, we may call
it a Hardware Node or a host. When we talk about a Virtuozzo
Container specifically, we call it a Container. Sometimes,
however, we will be talking about servers in general. So,
when you see the term "server", it could mean any server,
physical or virtual.

Server ID This is a globally unique ID that is assigned to any server in
the Agent infrastructure. As soon as Agent is installed on a
physical machine, it is assigned a Server ID. Every Virtuozzo
Container that you create on it is also assigned a globally
unique Server ID. The ID is guaranteed to be unique across
computers and networks. Server IDs are kept internally by
Agent and are used as references in all other API calls that
perform operations on the servers.

Environment Same as Server above. This is an obsolete term but it still can
be seen in some of the Agent source code and data.

EID Environment ID. Same as Server ID above. The term is
obsolete but it is still being used in the Agent API code -- eid
is the name of the parameter in calls that perform operations
on physical and virtual servers.

Getting Started

20

Virtuozzo Container ID

Virtuozzo Container ID is a Virtuozzo-level 1D, which is
assigned to every Container when it is created. If you are
familiar with the previous versions of Virtuozzo, this is the
old-style "VPS ID". This ID is unique only within the context
of a given Hardware Node. The ID is not to be confused with
the Server ID described above, which is a universally unique
Agent-level ID.

Virtuozzo group
Master Node

Slave Node

The term Virtuozzo group refers to a network of servers each
running its own Agent software and interconnected with each
other by means of internal Agent mechanisms. The servers in
such a group are organized in a hierarchical structure where
there's one Master Node and many Slave Nodes.

Master Node administers the entire group by allocating,
monitoring, and controlling the group resources. Master is
also capable of accessing any Slave Node in a group, meaning
that once a client program is connected to the Master Node, it
can send requests to any Slave Node in the group.

Realm

A Realm is a collection of parameters that define an
authentication database containing the Agent user and group
data. Agent supports a number of different databases,
including operating system wuser registries and LDAP-
compliant directories. Realm definitions are stored in the
Agent configuration. Every Realm is assigned a universally
unique 1D by Agent when it is created.

21

CHAPTER 3

Using XML AP

The material in this chapter is intended for developers who would like to develop client
applications using XML API. This chapter does not provide general information on XML. We
assume that you are comfortable working with XML and have some experience working with
XML Schema language (also referred to as XML Schema Definition or XSD).

In This Chapter

XIMIL APL BASICSuviiuiiiieeite ittt sttt ettt s b et e e ste e sbe e sbe e saaesabesabeesbeebeesbeesbeesaneenreeans 21
Creating a Simple Client APPlICALIONcooiiiieee e 35
Login and SesSion ManagEMENTcccveieeieeiie e sieeie e e se e se e sre e s e ee e ee e sreesreesreesreesnee s 46
Creating and Configuring Virtuozzo CONtAINErSccceviviiiieierieie e 53
Performance MONITOTcuiii ettt st e et eneesreene e e eeeens 68
EVENES QN ALBIES ...ttt sttt nee e 84
REQUESE ROULING ...ttt sttt et e st st e naesae s e e bestaaneesrennas 87

XML API Basics

This section describes the main principles of the Parallels Agent XML API and technologies it
is built upon. It then provides technical details on the Parallels Agent XML message format,
complete with guidelines and examples. It concludes with the description of error handling in
API calls.

Using XML API 22

XML Schema

XML Schema is an XML document that defines how the XML data must be organized.

The XML Schema:

= Defines elements that can appear in a document

= Defines attributes that can appear in a document

= Defines which elements are child elements

= Defines the order of child elements

= Defines the number of child elements

= Defines whether an element is empty or can include text

= Defines data types for elements and attributes

= Defines default and fixed values for elements and attributes

The Parallels Agent XML Schema defines every message that you can send and receive. This
means that every possible request and response message is strictly defined and must be

structured and formatted according to the Schema specifications. Parallels Agent XML API is
based on the XML Schema 1.1 standard.

The Parallels Agent XML Schema files (XSDs) are not included in the Parallels Virtuozzo
Containers distribution. Instead, the XML Schema is documented in the Parallels Agent XML
Reference guide, which is a companion to this book. The guide provides specifications and
descriptions of data types, request and response messages, and includes XML code samples.
Please use it as a reference when programming with either the XML or the SOAP API.

Agent Messages

In order to build XML messages correctly and to take full advantage of the available options, it
is important to understand the basic building blocks of a message. This section describes how an
Agent message is organized, and provides the necessary specifications and examples.

XML Message Specifications

The XML message specifications in the Agent documentation are described using tables, similar
to the following example:

Name Min/Max Type Description

login

{
name 1..1 base64Binary User name.
domain 0..1 base64Binary Domain.
realm 1..1 guid_type Realm ID.
password 1..1 base64Binary User password.

Using XML API 23

expiration 0..1 int Custom timeout value.

}

The information in a table is based on a corresponding XML Schema and describes the format
of a request or response message, or the format of a data type.

Each row in a table represents an XML element. The elements are displayed in the order they
are defined in the XML Schema.

The definitions for the table columns are as follows:

Name. Specifies an XML element name. The curly brackets represent the standard XML
Schema xs:sequence element. This means that the elements inside the brackets are the child
elements of the element that precedes the opening bracket. In our example, the name, domain,
realm, password, and expiration elements are children of the login element. The
following is a sample XML code, built according to this specification:
<login>

<name>bXluYW1Il</name>

<domain>bXlkb21haW4=</domain>

<realm>bXlyZWFsbQ==</realm>

<password>bXIwYXNz</password>

<expiration>1000</expiration>
</login>

Min/Max. Specifies the cardinality of an element (the number of its minimum and maximum
occurrences) in the following format:

minOccurs. .maxOccurs
0O in the first position indicates that the element is optional.

1 in the first position indicates that the element is mandatory and that it must occur at least
once.

A number in the second position indicates the maximum allowable number of occurrences. The
[1 (square brackets) in the second position indicate that the maximum number of the element
occurrences is unbounded, meaning that the element may occur as many times as necessary in
the same XML document at the specified position.

Type. Specifies the element type. The following element types are used in the schema:

= Standard simple types: int, string, base64Binary, etc.

= Custom simple types. These types are usually derived from standard simple types with
additional restrictions imposed on them.

= Custom complex types.

Description. The description column contains the element description and provides the
information about its usage.

Using XML AP

24

XML Message Examples

The following table contains an examples of a valid Agent request message:

XML element

Description

<packet version="4.0.0" id="2">

This is the root element of any message.
The id attribute specifies the packet ID.
The version attribute specifies the
protocol version.

<target>sessionm</target>

The target Agent operator that the
request should be sent to for processing.

Note: When using the system
operator, do not include the target
element. The system operator is
the only exception. All other
operators require the target
element.

<data>

The data block contains the message
body.

<sessionm>

Every request begins with the name of
the interface providing the desired
functionality. The interface name is
always the same as the name of the
operator (see target element above).

<login>

This is the name of the API call.

<name>bXluYW1l</name>

This and the following elements are the
API call parameters.

<realm>00000000</realm> Parameter.
Parameter.
<password>bXIwYXNz</password>
</login> Closing tag.
</sessionm> Closing tag -
</data> Closing tag -
</packet> Closing tag -

A response message may look similar to the following example:

XML element

Description

<packet id=""2"
11T11:17:30+0000"
version="4.0.0">

time="2007-03-
priority="0"

The root element. The time attribute
specifies the response date and time. The
version attribute specifies the
protocol version.

<origin>sessionm</origin>

The name of the operator that processed
the request and generated this response
as a result.

Using XML AP

25

<target>vzclientl</target>

The client who sent the initial request
message. This value is generated and
used internally by Agent.

<data> The message body.
<sessionm> Just like a request message, every
response message also begins with the
name of the interface. The block that
follows this element contains the
returned data.
<token> Data.
Data.
<user>AQUAAAAAIAFWKOp. . .</user>
<groups> Data.
Data.
<sid>AQUAAAAAIABWKop. .</sid>
</groups> Closing tag.
</token> Closing tag.
</sessionm> Closing tag.
</data> Closing tag.
</packet> Closing tag.

Message Header

The two main sections of any Agent XML message is the header and the body. The header

provides message routing and control information. The body of the message contains the actual

request (or response) parameters and data. The packet element is the root element of every
message. Both the header and the body of a message reside within the same parent packet

element.

The following table contains the Agent message header specification, as defined in XML

Schema.

Message header specification:

Name Min..Max Type Description
packet The root element of an Agent XML
message.
{
cookie 0..1 string User-defined information describing the

message, or any other type of information.
The data specified here remains unchanged
during the request/response operation, i.e.
if you put some data into this element in
the request message, the response message
will contain the same data.

Using XML AP

26

target

0..01

string

In request messages, this element must
contain the name of the operator to which
the request should be sent for processing.

Note: When wusing the system
operator, do not include the target
element. The system operator is the
only exception. All other operators
require this element.

The name of the operator is always the
same as the name of the corresponding
interface that you are using. For example,
if you are using a call from the vzaenvm
interface, the name of the target operator is
also vzaenvm.

Multiple targets may be specified if you
are including multiple calls in a single
request.

In response messages, this element
contains the name of the client that
originated the request (the value is
generated and used internally by Agent).

origin

0..1

string

The name of the operator that generated
the response. Included in response
messages only.

Src

0..1

routeType

The source routing information. This field
is automatically populated by the director
on the server side when a message is
routed from the corresponding operator to
it. The same information is also duplicated
in the dst element (described below)
when a response is generated and is sent
back to the client.

director

0..1

string

The name of the director to which the
target operator belongs.

host

0..1

string

The Agent host ID. Used by Agent to
determine the host address. Should be
either contained in the Agent configuration
(global mapping) or be a result of
exclusive connect.

index

0..1

string

For on-demand operators, specifies a
particular target.

target

0..1

string

Contains the origin information when a
packet is sent remotely.

Using XML AP

27

dst

routeType

The destination routing information.

In request messages, use this structure to
specify the server to which you want to
forward the request. For example, if you
are sending a request to the Agent on the
Hardware Node but would like the request
to be processed inside a Virtuozzo
Container, specify the Server ID for the
Container using the dst/host parameter.

In the response messages, this information
is automatically populated by the director
on the server side.

director

0..1

string

The name of the director to which the
target operator belongs. Populated
automatically by the director.

host

0..1

string

Destination Server ID. When using the
message forwarding feature, it is used for
specifying the 1D of the target server.

index

0..1

string

For on-demand operators, specifies a
particular target. Populated automatically
by the director.

target

0..1

string

Contains the origin information when a
packet is sent remotely. Populated
automatically by Agent.

}

session

string

Session ID.

In the request messages, this field is used
to specify the session that should be used
to process the request.

In the response messages, the ID indicates
the session that was used to process the
request.

The session ID is obtained from the
response message of the
sessionm/login APl call after a
successful login.

}

The packet element may optionally contain attributes described in the following table.

Attributes of the <packet> element:

Attribute

Type

Description

version

string

Parallels Agent protocol version number. The
current protocol version number is 4.0.0. The
older 3.0.3 protocol is also supported in
Virtuozzo Containers 4.0.

Using XML AP

28

string

Packet ID. If included in a request message, the
response will contain the same ID. This allows the
response to be correlated with the original request.
The attribute must also be included if you want to
be notified in case of the request timeout, or if the
packet was dropped on the server side for any
reason. As a rule of thumb, you should always
include this element in all of your outgoing
packets.

The value should normally be a string containing
an integer value, but it can also contain other
characters if needed.

priority

string

Packet priority. Specifies the significance of the
message when it is placed into a message queue.
The higher the priority value, the less significant
the packet is. The value of zero is the default
priority.

Priorities range from -3000 to 3000.
-3000 to -1000 for heavy messages.
-999 to 999 for normal messages.

1000 to 3000 for urgent messages.

time

datetime_type

The time when the packet was sent; in the ISO-
8601 format: (e.g. "2007-02-04T08:55:51+0000").

progress

string

Use this attribute to enable the progress reporting
for long operations if you would like to receive
intermediate results and to keep track of the
request processing. Please note that not all
operations actually generate progress reports.

The possible values are:
on -- the progress reporting is on.

off (default if the attribute is omitted) -- the
progress reporting is off.

When you turn the progress reporting on, you must
also include the id attribute (above) specifying the
message ID.

log

string

When present, the automatic progress reporting is
logged for the operations supporting it. Switch this
to “on” if you're planning to start an operation and
disconnect from Agent before the operation is
completed. By doing so, you'll be able to reconnect
later and check the log files for the results of your
operation.

The requests marked as Logged Operation in the
XML API Reference support this feature.

Possible values are:
on -- the logging is turned on.

off (default) -- the logging is off.

29

Using XML AP
type int *** INTERNAL ***
Bit field for the internal type of the message.
#define UNFINISHED 0x00000001
#define RESPONSE 0x00000002
#define RESCHEDULE 0x00000004
#define TIMEOUT 0x00000008
timeout int The timeout value which will be used for handling
this request. The value can be specified in the
incoming packet or it can be sent back from the
operator, notifying the director about the time it is
going to handle it.
timeout _lim |int *** INTERNAL ***
it Timeout limit for message processing. Used by an
operator in determining the validity of its timeout.
uid int *** INTERNAL ***
UID of the user sending this packet.
Example:

The following is an example of an Agent message header, built according to the specifications
above. In a real message, the values of the XML elements would be substituted with the

appropriate names, 1Ds, etc.

<packet version="4.0.0" i1d="500">
<cookie>I"m a cookie holding some text</cookie>
<target>operator_name</target>

<dst>

<host>target_server_ID</host>

</dst>

<session>session_id</session>

</packet>

Using XML API 30

Message Body

Message body contains the actual request or response parameters and data. The data element
is the root element of the message body tree. It is followed by the name of the interface that you
would like to use, the name of the call, and the call parameters.

Note: There must be one and only one data element in any given message.

The request message:

The following XML code example is a complete Agent request message. As you already know,
the packet element is the root element of every Agent message. The target element
specifies the name of the target operator. The message body begins with the data element. The
sessionm element specifies the name of the interface. The available interfaces are
documented in the Parallels Agent XML API Reference documentation. The login element is the
name of the call. The name, realm, and password elements are the call parameters.

<packet version="4.0.0" i1d="2">
<target>sessionm</target>
<data>
<sessionm>
<login>
<name>cm9vdA==</name>
<realm>00000000-0000-0000-0000-000000000000</realm>
<password>bXIwYXNz</password>
</login>
</sessionm>
</data>
</packet>

The response message:

The following example demonstrates a complete response message. The body of the message
begins with the data element which is followed by the name of the interface that was used in
the corresponding request message, and the return parameters.

<packet xmlns:ns2="http://www.swsoft.com/webservices/vz1/4.0.0/types"
xmIns:nsl1="http://www.swsoft.com/webservices/vz1/4.0.0/sessionm"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
1d=""8c46e52645t18berd40" time="2007-09-09T02:11:21+0000"" priority="0"
version="4.0.0">
<origin>sessionm</origin>
<target>vzclient69-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<sessionm>
<session_id>vzl.40000.4.4fce28dd-0cd3-13. .</session_id>
<token xsi:type="ns2:tokenType">
<user>AQUAAAAAIAHAKM5POWXFE7uUMZK5QPUQAAAAAA==</uUser>
<groups>
<sid>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQAAAAAA==</sid>
<sSi1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAQAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQCgAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQAgAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQAWAAAA==</sid>

Using XML API 31

<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQBAAAAA==</sid>
<sid>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQBgAAAA==</sid>
<sSi1d>AQUAAAAAI AHAKM5POWXFE7uUMZK5QPUQAAAAAA==</sid>
</groups>
<deny only_sids/>
<privileges/>
</token>
</sessionm>
</data>
<src>
<director>gend</director>
</src>
</packet>

The body of a response message may, in general, contain one of the following types of
information:
= The actual information requested, as shown in the example above.

= The <OK/> element if the call doesn't return any data by definition. The <OK/> means that
the operation completed successfully.

= An error information, in case of a failure.
A complete XML Schema specification exists for every possible response of every Agent XML

API call, and is described in the corresponding section of the Parallels Agent XML API Reference
guide.

Using XML API 32

Multiple Calls and Targets

You may include more than one API call in a single request message. The calls may belong to
the same interface/operator or they may belong to different operators. For example, you may
start a performance monitor and at the same time subscribe for an event notification. Or retrieve
a list of disks from the Hardware Node and at the same time retrieve a list of devices from it.
There are a few simple rules that you should follow when making multiple calls in the same
message. If all calls belong to the same operator, simply specify the operator name in the
target element in the message header and list the calls one after another in the message body.
If the calls belong to different operators, include a separate target element containing the
name of the operator for each call, and include the API calls in the message body. The calls are
processed on the server side independently from each other. If one of the calls fails, the other
calls will still be processed. The response messages are sent back for each call individually, one
separate response for each request.

Example

The following request message contains two calls: one retrieves the information about the
devices from the Hardware Node, and the other retrieves the information about the disks and
partitions.

Input

<packet version="4.0.0" id="2">
<target>vzadevm</target>
<target>computerm</target>
<data>
<vzadevm>
<get_info/>
</vzadevm>
<computerm>
<get disk/>
</computerm>
</data>
</packet>

Each call generates an individual response.

Output 1

<packet xmlns:ns2="http://www.swsoft.com/webservices/vz1/4.0.0/types"
xmIns:nsl="http://www.swsoft.com/webservices/vzI1/4.0.0/computerm"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
1d=""bc46e53091t3d6crd40" time="2007-09-09T02:39:02+0000"" priority="0"
version="4.0.0">
<origin>computerm</origin>
<target>vzclient69-4fce28dd-0cd3-1345-bb94-3192b940Fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<computerm>
<disk>
<partition>
<name>/dev/sda2</name>
<mount_point>/</mount_point>
<block size>4096</block_size>
<fs_type>ext3</fs_type>

Using XML API 33

<option>rw</option>

<blocks xsi:type=""ns2:resourceType'>
<total>1239079</total>
<used>344363</used>
<free>830758</free>

</blocks>

<inodes xsi:type=""ns2:resourceType'>
<total>1280000</total>
<used>45322</used>
<free>1234678</free>

</inodes>

</partition>

<I-- The rest of the output is omitted for brevity -->

</disk>
</computerm>
</data>
<src>
<director>gend</director>
</src>
</packet>

Output 2

<packet
xmIns:nsl="http://www.swsoft.com/webservices/vzas4.0.0/vzadevm"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
id=""bc46e53091t3d6crd40" time="2007-09-09T02:39:03+0000" priority="0"
version="4.0.0">
<origin>vzadevm</origin>
<target>vzclient69-4fce28dd-0cd3-1345-bb94-3192b940Fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<vzadevm>
<device_info>
<partition>/dev/sdal</partition>
<partition>/dev/sda2</partition>
<partition>/dev/sda3</partition>
<partition>/dev/sda5</partition>
<partition>/dev/dm-0</partition>
<fFilesystem>auto</filesystem>
</device_info>
</vzadevm>
</data>
<src>
<director>gend</director>
</src>
</packet>

The Null-Terminating Character

When an XML request message is sent to Agent from a client program, it must be terminated
with a binary zero character (written as "\0"). The null-terminating character is used by Agent
to determine the end of the message.

Using XML API 34

Error Handling

When an error occurs during the request processing, the error information is returned to the
client as an XML message. A single response message may contain multiple errors if the
original request contained more than one request. A single request may also produce more than
one error message. The error information is included in the message body and may be placed at
the various levels of the message body hierarchy depending on the original location of the
request or the element that caused the error. The format of the XML structure containing the
error information is as follows:

<data>
<operator_name>
<error>
<code>error_code</code>
<message>error_message</message>
</error>
</operator_name>
</data>

The element that we described as operator_name in the example above will actually have the
same name as the Agent operator that generated the response. The error information consists of
a numeric code and a string describing the problem. Agent has its own list of errors. The errors
reported by various system utilities and the internal calls invoked by Agent operators are
automatically translated to their client-level Agent equivalents. This means that regardless of the
computing platform, the error codes and descriptions will always be consistent.

The following is an example of an error message produced by the login call of the
sessionm interface.

Input:

<packet version="4.0.0" id="2">
<target>sessionm</target>
<data>
<sessionm>
<login>
<name>cm9vdA==</name>
<realm>00000000-0000-0000-0000-000000000000</realm>
<password>bXIwYXNz</password>
</login>
</sessionm>
</data>
</packet>

Output:

<?xml version="1.0" encoding="UTF-8"?><packet
xmIns:nsl="http://www.swsoft.com/webservices/vzI1/4.0.0/sessionm"
xmIns:ns2="http://www.swsoft.com/webservices/vz1/4.0.0/protocol™
xmIns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
1d=""8c46e129f3t18ber330" time="2007-09-07T05:04:50+0000" priority="0"
version="4.0.0">
<origin>sessionm</origin>
<target>vzclient67-4fce28dd-0cd3-1345-bb94-3192b940fh90</target>
<dst>

<director>gend</director>
</dst>
<data>

Using XML API 35

<sessionm>
<error>
<code>400</code>
<message>Invalid packet: invalid password.</message>
</error>
</sessionm>
</data>
<src>
<director>gend</director>
</src>
</packet>

Creating a Simple Client Application

In this section, we'll create a simple client application that will get you started with Parallels
Agent programming. We will be using Perl to write our sample program. The complete program
code is included in The Complete Program Code section (see page 44).

If you are using Linux, you probably have Perl already installed on your machine. If you are
using Windows, you can download Perl for Windows from the Internet. As an example,
ActivePerl for Windows is available as a free download at http://www.activestate.com.

A client program can communicate with Agent using the secure SLL over TCP/IP or plain
TCP/IP connection. The TCP/IP module comes standard with Perl. If you would like to
communicate with Agent securely, you will need the 10::Socket::SSL module that provides SSL
support for Perl. The module <can be downloaded from CPAN here:
http://search.cpan.org/~behroozi/lO-Socket-SSL-0.97/SSL.pm.

The SSL package requires another module called Net::SSLeay, which can also be
downloaded from CPAN by going to this URL: http://search.cpan.org/~flora/Net_SSLeay.pm-
1.30/SSLeay.pm.

Both modules come with extensive documentation and easy-to-follow installation instructions.
Now that we have our development environment set up, we are ready to write our program. The

program will be as basic as it can possibly be but it should suffice as an entry point into the
Agent programming.

Using XML API 36

Connecting to Agent

Create a new text file named AgentExamplel.pl and paste or type the following code into
it:

#1/usr/bin/perl -w
#
use strict;

Let's now add the code that will establish a connection with Agent.

#Set $SSL_ON = 1 if you wish to use secure connection.
use constant SSL_ON => 0;

#Connection information.
#Change the IP address to your own server address.
use constant CONF_CONNECTION => {
ip => "192.168.0.37",
port => &SSL _ON ? 4434 : 4433,
class => &SSL_ON ? "10::Socket::SSL" : "10::Socket::INET"
};

eval "use ".&CONF_CONNECTION->{class};
die $@ 1T $@;

#Nul l-terminating character (packet separator).
use constant MSG_TERMINATOR => '\0";
local $/ = &MSG_TERMINATOR;

In the code above we create a class CONF_CONNECTION containing the Agent connection
information. By default we are using the 10: :Socket: : INET module to communicate with
Agent via plain TCP/IP. If you would like to communicate with Agent securely, set the
$SSL_ON constant to 1. Agent is using port 4433 for plain TCP/IP connections and port 4434
for SSL connections. The MSG_TERMINATOR constant is a binary zero character which we'll
be appending to every Agent request message (every Agent request must be null-terminated).
The following code creates a socket thereby getting a connection to Agent.

#Create socket

print "Connecting to Agent...\n\n";

our $socket = &CONF_CONNECTION->{class}->new(
PeerAddr => &CONF_CONNECTION->{ip},
PeerPort=> &CONF_CONNECTION->{port},
Proto => "tcp”,

)

unless($socket) {
die "Connection refused: $!I"
}

We can now read the Agent response from the socket as follows:

#Read the greeting message from Agent.
my $hello = $socket->getline;
chomp($hello);

print $hello;

Save the file now and run the program by typing perl AgentExamplel_pl at the
command prompt. You should see the output on your screen similar to the following:

Using XML API 37

<packet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance' id="0"
priority="0" version="4.0.0"">
<origin>vzclientl148-4fce28dd-0cd3-1345-bb94-3192b940fb90</0origin>
<target>agent</target>
<data>
<ok/>
<eid>4fce28dd-0cd3-1345-bb94-3192b940Ffb90</eid>
</data>
</packet>

If you see the above message on the screen, it means that Agent is functioning properly, and that
you are connected to it. If you don't see the message, make sure that Agent is running (see page
14) and that you can ping the server from your client computer.

Let's now examine the response that we received from Agent. As you can see, it is an XML
document. In fact, this is the very first message that you receive from Agent every time you
connect to it. It is basically a greeting message from Agent, which means that the initial
connection has been established successfully. The eid element contains the Server ID (see
page 19) of the Hardware Node that your program is now connected to.

Using XML API 38

Logging In

Once you are connected to Agent, the first thing that you have to do is log in. You do that by
executing the login API call from the system interface supplying the user credentials, which
includes a user name, a password, and a Realm ID. Since you may not know the Realm ID in
advance, you would normally retrieve the list of Realms using the system/get_realm call.
This is the only call that can be executed without being logged in. First, we have to compose our
message:

#XML message. Retrieving the list of realms from the Hardware Node.
my $request=qq-
<packet version="4.0.0" id="2">
<data>
<system>
<get_realm/>
</system>
</data>
</packet>

The $request variable in the code above now contains our XML message. The next code
segment will write the XML message to the socket that we created earlier:

#Write the XML message to the socket.
$socket->printflush($request.&VSG_TERMINATOR) ;

Please note that we appended the binary zero character contained in the MSG_TERMINATOR
constant to the message. Failure to do so will make the request unrecognizable to Agent. Once
again, we will read the output from the socket and will display it on the screen.

#Read the response and display it on the screen.
my $response = $socket->getline;
chomp($response);

print $response;

The response to this message will contain the complete list of Realms defined in the Agent
configuration on the Hardware Node. It will look similar to the following:

<packet i1d="2" version="4.0.0" priority="0">
<origin>system</origin>
<target>vzclient8-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<data>
<system>
<realms>
<realm>
<login>
<name>Y249dnphzZ2VudCxkYz1WWkw=</name>
<realm>458d583F-12d8-7940-a9d3-a9%9a3d2ec1509</realm>
</login>
<builtin/>
<name>Parallels Internal</name>
<type>l1</type>
<1d>458d583F-12d8-7940-a9d3-a%9a3d2ec1509</id>
<address>vzsveaddress</address>
<port>389</port>
<base_ dn>ou=4fce28dd-0cd3-1345-bb94-
3192b940fb90,dc=vzI</base_dn>
<default_dn>cn=users,ou=4fce28dd-0cd3-1345-bbh94-
3192b940fb90,dc=vzI</default_dn>
</realm>

Using XML API 39

<realm>
<builtin/>
<name>System</name>
<type>0</type>
<id>00000000-0000-0000-0000-000000000000</ 1d>
</realm>
<realm>
<builtin/>
<name>Virtuozzo Container</name>
<type>1000</type>
<id>00000000-0000-0000-0100-000000000000</ 1d>
</realm>
</realms>
</system>
</data>
</packet>

Assuming that Virtuozzo Containers software has just been installed on our system, we will use
the system administrator account to log in to Agent (see Installation (on page 13) for more info).
The System Realm (see page 18) from the output above refers to the user registry on the host
OS, so this is the Realm that we want. In order to log in, you will also need to know the
administrator password. In the following example, we are logging in to Agent installed on a
Linux system using the root account. Don't forget to substitute the password value with your
root password. If you are using a Windows-based system, use your Windows administrator
account. Please note that the name, realm, and password values are Base64-encoded in
accordance with the schema.

#XML message. Logging in.
$request=qqg-
<packet version="4.0.0" id="'3">
<data>
<system>
<login>
<name>cm9vdA==</name>
<realm>00000000-0000-0000-0000-000000000000</realm>
<password>bXIwYXNz</password>
</login>
</system>
</data>
</packet>

We will now write the XML message to the socket the same way we did when we were
retrieving Realms in the previous step.

#Write the XML message to the socket.
$socket->printflush($request.&VSG_TERMINATOR) ;

Once again, we are reading the output from the socket and displaying it on the screen.

#Read the response and display it on the screen.
$response = $socket->getline;

chomp($response);

print $response;

If the supplied credentials were valid, the response message will contain the user security
information, and will look similar to the following example:

<packet 1d="3" priority="0" version="4.0.0">
<origin>system</origin>
<target>vzclientl19-4fce28dd-0cd3-1345-bb94-3192b940Fb90</target>
<data>

Using XML API 40

<system>
<token>
<user>AQUAAAAAIAHAKM5POwWXFE7uUMZK5QPUQAAAAAA==</user>
<groups>
<si1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAAAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQAQAAAA==</sid>
<sid>AQUAAAAA I ADAKM5POwxFE7uUMZK5QPuQCg ==</sid>
<si1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAgAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAWAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQBAAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwXFE7uUMZK5QPUQBgAAAA==</sid>
<sid>AQUAAAAAI AHAKM5POwXFE7uUMZK5QPUQAAAAAA==</sid>
</groups>
<deny_only_sids/>
<privileges/>
</token>
</system>
</data>
</packet>

If you see a message like that on your screen, it means that you are now logged in to Agent and
that a permanent session has been created for the user. A permanent session is associated with
the physical connection that we've established earlier and it never expires.

Let's examine the rest of the elements in the response message. The packet element contains
the message ID, which, as you can see, is the same as the one we specified in the request
message. The target element contains the ID of our client connection (the value is assigned
and used by Agent internally). The origin element contains the name of the Agent operator
that processed the request on the server side. The user element contains the SID (security ID)
of the user. The sid elements within the groups element contain the security IDs of the
groups to which the user belongs as a member.

The next request that we are going to send to Agent will retrieve a list of the Virtuozzo
Containers from the Hardware Node.

Using XML API 41

Retrieving a List of Virtuozzo Containers

To retrieve a list of Virtuozzo Containers from the Hardware Node, we will use the get_list
call from the vzaenvm interface (Virtuozzo Container management).

#XML message. Getting a list of Virtuozzo Containers.
$request=qq-~
<packet version="4.0.0" id="4">
<target>vzaenvm</target>
<data>
<vzaenvm>
<get list/>
</vzaenvm>
</data>
</packet>

#Write the XML message to the socket.
$socket->printflush($request.&VSG_TERMINATOR) ;

#Read the response and display it on the screen.
$response = $socket->getline;

chomp($response);

print $response;

The response will contain the list of Server IDs (see page 19). The following is an example of
the response message:

<packet id="4" time=""2007-08-29T22:51:52+0000" priority="0"
version="4.0.0">
<origin>vzaenvm</origin>
<target>vzclient24-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<vzaenvm>
<eid>ba92bfh3-d97b-014F-a754-5b30528477c3</eid>
<eid>e9ab2834-ed97-1f4b-bd41-81c27Ffacfc30</eid>
<eid>72145bf0-7562-43d4-b707-cc33d37e3F10</eid>
<ei1d>6dbd99dc-f212-45de-a5Ff4-ddb78a2b5280</ei1d>
</vzaenvm>
</data>
<src>
<director>gend</director>
</src>
</packet>

To complete this demonstration, we'll add a code to our program that will restart one of the
Virtuozzo Containers from the list above.

Using XML API 42

Restarting a Virtuozzo Container

The restart call from the vzaenvm interface is used to restart a Virtuozzo Container. The
call accepts a single parameter: the Server ID of the Container to restart. We will use the Server
ID of one of the Containers from the list that we retrieved in the previous step (see page 41).

#XML message. Restarting a Container.
$request=qq-~
<packet version="4.0.0" id="4">
<target>vzaenvm</target>
<data>
<vzaenvm>
<restart>
<eid>e9ab2834-ed97-1f4b-bd41-81c27Ffacfc30</eid>
</restart>
</vzaenvm>
</data>
</packet>

#Write the XML message to the socket.
$socket->printflush($request.&MSG_TERMINATOR) ;

#Read the response and display it on the screen.
$response = $socket->getline;

chomp($response) ;

print $response;

If the call succeeds, you should see an output similar to the following:

<packet i1d="4" time="2007-08-29T23:26:50+0000" priority="0"
version="4.0.0">
<origin>vzaenvm</origin>
<target>vzclient27-4fce28dd-0cd3-1345-bb94-3192b940Fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<vzaenvm>
<ok/>
</vzaenvm>
</data>
<src>
<director>gend</director>
</src>
</packet>

The response is a standard Agent "OK" message, which is returned when an API call doesn't
return any data. It simply means that the request executed successfully.

Using XML API 43

Summary

In this section, we've created a simple client demonstrating:

1
2
3
4

How to establish a connection with Agent.
How to log in to Agent.
How to retrieve a list of the Virtuozzo Containers from the Hardware Node.

How to restart a Container.

Steps 1 and 2 are the necessary steps that must be taken in any Agent application. The steps 2
and 3 have demonstrated how to work with Virtuozzo Containers. The vzaenvm interface is
not limited to those two tasks of course. You can refer to the Parallels Agent XML Reference
guide for the complete documentation of the vzaenvm and other interfaces.

Using XML API 44

The Complete Program Code

#1/usr/bin/perl -w

#

#Copyright (c) 2008 by SWsoft
#

use strict;

#Set $SSL_ON = 1 if you wish to use secure connection.
use constant SSL_ON => 0;

#Connection information.
use constant CONF_CONNECTION => {

ip => "192.168.0.37",

port => &SSL_ON ? 4434 : 4433,

class => &SSL ON ? "10::Socket::SSL" : "10::Socket::INET"
};

eval "use ".&CONF_CONNECTION->{class};
die $@ 1T $0;

#Null-terminating character (packet separator).
use constant MSG_TERMINATOR => '\0";
local $/ = &MSG_TERMINATOR;

#Create socket

print ""Connecting to Agent...\n\n";

our $socket = &CONF_CONNECTION->{class}->new(
PeerAddr => &CONF_CONNECTION->{ip},
PeerPort=> &CONF_CONNECTION->{port},
Proto => “tcp-,

)

unless($socket) {
die "Connection refused: $!"
b

#Read the greeting message from Agent.
my $hello = $socket->getline;
chomp($hello);

print $hello;

print "\n";
print "—-——————— \n\n"";

#XML message. Getting the list of realms.
my $request=qq-
<packet i1d="2">
<data>
<system>
<get_realm/>
</system>
</data>
</packet>

Using XML API

45

#Write the XML message to the socket.
print "Getting a list of realms..._\n\n";
$socket->printflush($request.&VSG_TERMINATOR) ;

#Read the response and display it on the screen.
my $response = $socket->getline;
chomp($response) ;

print $response;

print "\n";

print "————————— \n\n"*;

#XML message. Logging on.
#Change the name and password to your
#administrator name and password.
$request=qq-~
<packet version="4.0.0" i1d="'3">
<data>
<system>
<login>
<name>cm9vdA==</name>

<realm>00000000-0000-0000-0000-000000000000</realm>

<password>bXIwYXNz</password>
</login>
</system>
</data>
</packet>

#Write the XML message to the socket.
print "Logging on...\n\n";
$socket->printflush($request.&VMSG_TERMINATOR) ;

#Read the response and display it on the screen.
$response = $socket->getline;

chomp($response) ;

print $response;

print "\n";

print "—————————— \n\n"*;

#XML message. Getting a list of Virtuozzo Containers.
$request=qq-~
<packet version="4.0.0" id="4">
<target>vzaenvm</target>
<data>
<vzaenvm>
<get list/>
</vzaenvm>
</data>
</packet>

#Write the XML message to the socket.
print "Getting a list of Containers...\n\n";
$socket->printflush($request.&VSG_TERMINATOR) ;

#Read the response and display it on the screen.
$response = $socket->getline;

chomp($response) ;

print $response;

Using XML API 46

print "\n";
print "——-————— \n\n"";

#XML message. Restarting a Container.
#Change the Server 1D to the ID of your Container.
$request=qq-~
<packet version="4.0.0" id="4">
<target>vzaenvm</target>
<data>
<vzaenvm>
<restart>
<eid>e9ab2834-ed97-1f4b-bd41-81c27Ffacfc30</eid>
</restart>
</vzaenvm>
</data>
</packet>

#Write the XML message to the socket.
print "Restarting a Container..._\n\n";
$socket->printflush($request.&VMSG_TERMINATOR) ;

#Read the response and display it on the screen.
$response = $socket->getline;

chomp($response);

print $response;

print "\n";

Login and Session Management

The Agent login procedure comprises the following steps:

1 Getting a list of Realms from Agent and choosing the Realm against which to authenticate
the user. You can perform this first step without being logged in to Agent.

2 Log in using the name and password of the user from the selected Realm. If authentication
is successful, a permanent session will be created for the user.

3 Optionally, you may create an additional, temporary session for the user.

The following subsections describe each step in detail.

Using XML API 47

Retrieving Realm Information

To retrieve the list of the existing Realms, use the following request:

<packet version="4.0.0" id="2">
<data>
<system>
<get_realm/>
</system>
</data>
</packet>

Once again, this call does not require you to be logged in. The Agent response will contain the
list of the available Realms and will look similar to the following:

<packet xmlns:ns2="http://www.swsoft.com/webservices/vz1/4.0.0/types"
xmIns:nsl="http://www.swsoft.com/webservices/vz1/4.0.0/dirm"
xmIns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
id=""8c46e79deltl18ber68c" priority="0" version="4.0.0">
<origin>system</origin>
<target>vzclientl21-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<data>
<system>
<realms>
<realm xsi:type="nsl:dir_realmType'>
<login>
<name>Y249dnphzZ2VudCxkYz1WWkw=</name>
<realm>458d583F-12d8-7940-a9d3-a%a3d2ec1509</realm>
</login>
<builtin/>
<name>Parallels Internal</name>
<type>l1</type>
<1d>458d583F-12d8-7940-a9d3-a%9a3d2ec1509</id>
<address>vzsveaddress</address>
<port>389</port>
<base_ dn>ou=4fce28dd-0cd3-1345-bb94-
3192b940fb90,dc=vzI</base_dn>
<default_dn>cn=users,ou=4fce28dd-0cd3-1345-bb94-
3192b940fb90,dc=vzl</default_dn>
</realm>
<realm xsi:type="ns2:realmType">
<builtin/>
<name>System</name>
<type>0</type>
<1d>00000000-0000-0000-0000-000000000000</ 1d>
</realm>
<realm xsi:type="ns2:realmType">
<builtin/>
<name>Virtuozzo Container</name>
<type>1000</type>
<1d>00000000-0000-0000-0100-000000000000</ 1d>
</realm>
</realms>
</system>
</data>
</packet>

The message above contains three Realm entries: Parallels Internal, System, and Virtuozzo
Container. The following describes each entry in detail.

Using XML API 48

Parallels Internal Realm

<realm xsi:type="nsl:dir_realmType'>
<login>
<name>Y249dnphz2VudCxkYz1WWkw=</name>
<realm>458d583f-f2d8-7940-a9d3-a9a3d2ec1509</realm>
</login>
<builtin/>
<name>Parallels Internal</name>
<type>1</type>
<id>458d583f-f2d8-7940-a9d3-a%9a3d2ec1509</id>
<address>vzsveaddress</address>
<port>389</port>
<base dn>ou=4fce28dd-0cd3-1345-bb94-3192b940fb90,dc=vzI</base _dn>
<default_dn>cn=users,ou=4fce28dd-0cd3-1345-bb94-
3192b940fb90,dc=vzl</default_dn>
</realm>

The Parallels Internal Realm is an authentication database that is installed on the host server
during the Virtuozzo Containers software installation. This database is used to store the
Virtuozzo Containers specific authentication information. Let's take a look at the XML structure
above. The type of the realm element is dir_realmType. It is a descendant of the base
realmType type and it is used to hold the information about an LDAP-compliant directory.
The type element specifies the Realm type -- the value of 1 (one) means LDAP directory. The
name element inside the login node is the user name that Agent will use to bound to the
directory instance. The name, in this case, is a distinguished name (DN) identifying the user
object in the directory. The user password is not included in the Realm definition but is known
to Agent. Agent uses this information to bound to the directory to perform user authentication.
The empty builtin element indicates that this is a built-in Parallels Internal Realm (as
opposed to custom Realms created by users). In fact, the rest of the Realms in this example are
built-in Realms. The address, port, base_dn, and default_dn parameters describe the
directory in terms of connectivity. Again, all of these elements are used by Agent to bound to
the directory instance. At this point they are of little interest to us. The id element contains the
Realm ID. This is the ID that you will use in all other calls that require it, such as the login
call that will be described later in this section. Please note that the ID of the Parallels Internal
Realm in your Virtuozzo Containers installation may not be the same as the ID in our example.
There can be only one Parallels Internal Realm on any given Hardware Node.

System Realm

<realm xsi:type="ns2:realmType">
<builtin/>
<name>System</name>
<type>0</type>
<1d>00000000-0000-0000-0000-000000000000</ 1d>
</realm>

The System Realm represents user registry of the host operating system. When Agent is first
installed, you will not have any Agent-specific users in any of the other Realms except the
System Realm. If you have just started with Agent programming, use the system administrator
account to log in to it. Agent knows how to identify the user with system administrator
privileges and by default grants her/him unlimited access to the host server and all of the
Virtuozzo Containers hosted by it. The ID of the System Realm in your installation will
probably be the same as in this example (all zeros) but it is not guaranteed, so you should obtain
it from the Agent installed on your server. You find the System Realm record in the result set by
looking at the Realm type, which should be O (zero).

Using XML API 49

Virtuozzo Container Realm

<realm xsi:type="ns2:realmType">
<builtin/>
<name>Virtuozzo Container</name>
<type>1000</type>
<1d>00000000-0000-0000-0100-000000000000</ 1d>
</realm>

This Realm represents an operating system user registry inside a Virtuozzo Container. Use this
Realm if you would like to log in to Agent as a user of one of the Containers. Once again, the
ID of this Realm in your Virtuozzo installation may not be the same as the ID you see in the
example above. Always get the Realm ID from the Agent installed on your server.

External LDAP directories

In our example, we didn't have any Realms representing an external LDAP directory. These
Realms are added by Virtuozzo Containers system administrators when they want to perform
user authentications against an external LDAP directory. The Realm record would look
similarly to the Virtuozzo Internal Realm described above except that the bui I'tin parameter
would not be present.

Using XML API 50

Logging In

We've demonstrated the login procedure in the beginning of this chapter when we created a
sample program (see page 38). This subsection describes the procedure in detail.

The initial login is performed by executing the system/ login request:

<packet version="4.0.0" i1d="'3">
<data>
<system>
<login>
<name>cm9vdA==</name>
<realm>00000000-0000-0000-0000-000000000000</realm>
<password>bXIwYXNz</password>
</login>
</system>
</data>
</packet>

In this example, we are logging in as the root user (the name and the password values are
base-64 encoded according to the XML Schema). We are specifying the ID of the System
Realm that we retrieved earlier because root is the user of the host server (the Hardware
Node). As a result, Agent will try to find the user in the host operating system user registry and
will verify that the supplied credentials are correct. If we wanted to log in as a user from any
other Realm, we would execute the same call supplying the appropriate user name, password,
and the Realm ID.

When logging in as a user from the Virtuozzo Container Realm (another built-in Realm), the
call is executed slightly differently. Let's say that we want to log in to Agent as the root user
from one of the Containers running on the Hardware Node. This is how you do it:

<packet version="" 1d=""3">
<data>
<system>
<login>
<name>cm9vdA==</name>

<domain>ZTIhYj 14MzQtZWQ5NyOxZ jR i LWIKNDETODF jMjdmYWNmYzMw</domain>
<realm>00000000-0000-0000-0100-000000000000</realm>
<password>bXIwYXNz</password>
</login>
</system>
</data>
</packet>

Compared to the previous login example, the XML packet above contains an additional
domain parameter. When logging in as a user from the Virtuozzo Container Realm, the
domain element must contain the Server ID of the Container. See Retrieving a List of Virtuozzo
Containers section (on page 41) for an example on how to retrieve Server IDs.

If the login is successful, the output will contain the user security information and will look
similar to the following:

<packet i1d="3" priority="0" version="4.0.0">
<origin>system</origin>
<target>vzclientl19-4fce28dd-0cd3-1345-bb94-3192b940Fb90</target>
<data>
<system>

Using XML API 51

<token>
<user>AQUAAAAA I AHAKM5POwWXFE7uUMZK5QPUQAAAAAA==</user>
<groups>
<sSi1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAAAAAA==</sid>
<s1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAQAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQCgAAAA==</sid>
<sid>AQUAAAAAI ADAKM5POwxFE7uUMZK5QPuUQAg ==</sid>
<si1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAWAAAA==</sid>
<sSi1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQBAAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQBgAAAA==</sid>
<si1d>AQUAAAAAI AHAKM5POwXFE7uUMZK5QPUQAAAAAA==</sid>
</groups>
<deny_only_sids/>
<privileges/>
</token>
</system>
</data>
</packet>

The output contains the security IDs (SIDs) of the user and all the groups to which the user
belongs as a member.

Using XML API 52

Sessions

When you execute the system/1ogin call, a permanent session is created for the user whose
credentials were included in the request. A permanent session is associated with the physical
connection to Agent that your client is using. If you are not planning on logging in multiple
users from the same program, you may simply use this session to execute your requests. A
permanent session never expires, which means that even if your client program doesn't send any
requests to Agent for a long time, the session will still stay active. When you are done working
with Agent, you may simply exit and the session will be terminated automatically.

Optionally, you may create additional sessions using the sessionm interface. This interface
allows to log in additional clients or create additional sessions for the clients that are already
logged in. Please note that you can use the sessionm interface only after you've logged in
using the system/l1ogin call. The following request logs the user in and creates a temporary
session:

<packet version="4.0.0" i1d="2">
<target>sessionm</target>
<data>
<sessionm>
<login>
<name>cm9vdA==</name>
<realm>00000000-0000-0000-0000-000000000000</realm>
<password>bXIwYXNz</password>
<expiration>1200</expiration>
</login>
</sessionm>
</data>
</packet>

The parameters in this call are used similarly to the system/login call described in the
previous section. The output will contain the SIDs plus the ID of the new session that was
created:

<packet id=""2" time="'2007-09-10T09:42:13+0000" priority="0"
version="4.0.0">
<origin>sessionm</origin>
<target>vzclientl133-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<sessionm>
<session_id>vzl.40000.4.4fce28dd-0cd3-1345-bb94-
3192b940fb90. . F7c46e51175t321d6069r202d</session_id>
<token>
<user>AQUAAAAA I AHAKM5POwWXFE7uUMZK5QPUQAAAAAA==</user>
<groups>
<sid>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQAAAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQAQAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQCgAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQAgAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQAWAAAA==</sid>
<sid>AQUAAAAAI ADAKM5POwWXFE7uUMZK5QPUQBAAAAA==</sid>
<si1d>AQUAAAAAI ADAKM5POWXFE7uUMZK5QPUQBgAAAA==</sid>
<s1d>AQUAAAAA I AHAKM5POwWXFE7uUMZK5QPUQAAAAAA==</sid>
</groups>

Using XML API 53

<deny_only_sids/>
<privileges/>
</token>
</sessionm>
</data>
<src>
<director>gend</director>
</src>
</packet>

In the output above, the session_id element contains the new session ID. You must include
this ID in every Agent request in order for the request to be processed within the contexts of the
session. Failure to do so will result in the message being sent and processed using the default
session created by the system/login call. The following example shows how to include the
session ID in an Agent request message.

<packet version="4_.0.0" 1d=""23">
<session>your_session_id_goes here</session>
<data>

</data>
</packet>

User sessions expire after some predefined period of inactivity or after the timeout limit
specified in the expiration parameter is reached. The default session timeout value is
specified in the Agent configuration. If the expiration element is included in the request
then its value overrides the default timeout value. Each request sent while a temporary session is
still active resets the session timeout to its initial state. For the complete list of calls provided by
the sessionm interface, please see the Parallels Agent XML API Reference guide.

Creating and Configuring Virtuozzo
Containers

This section describes how to create a Virtuozzo Container using Agent XML API.

Using XML API 54

Getting a List of Sample Configurations

When creating a Virtuozzo Container, you must choose a sample configuration for it. Virtuozzo
Containers software comes with a number of sample configurations, which are automatically
installed on the host server. To retrieve the list of the available configurations, use the
env_samplem/get_sample_conT request as shown in the following example:

<packet version="4.0.0" 1d="'23">
<target>env_samplem</target>
<data>
<env_samplem>
<get_sample_conf/>
</env_samplem>
</data>
</packet>

The output will contain all of the available configurations with the complete set of parameters
for each one (the output will be very long). You can review the parameters and their values but
what you really need is the configuration name and ID. The following example shows the
typical output. The QoS (quality of service) and some of the other configuration parameters are
omitted for brevity in our example. The 1d (sample configuration ID), name (configuration
name), and version (the platform, architecture, and virtualization technology information) are
highlighted in bold in the example for your convenience:

<packet xmlns:ns2="http://www.swsoft.com/webservices/vz1/4.0.0/types"
xmIns:nsl="http://www.swsoft.com/webservices/vz1/4.0.0/env_samplem"
xmIns:ns3="http://www.swsoft.com/webservices/vza/4.0.0/vzatypes"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
1d=""17c46e7e9f0t6df1r68c™ time="2007-09-10T10:03:43+0000"" priority="0"
version="4.0.0">
<origin>env_samplem</origin>
<target>vzclientl22-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<env_samplem>
<sample_conf xsi:type="ns2:sample_confType'>
<env_config xsi:type="ns3:venv_configType">
<offline_management>1</offline_management>
<architecture>i386</architecture>
<0s Xxsi:type="'ns2:osType'>
<platform>linux</platform>
<name/>
</0s>
<sIm_mode>alI</sIm_mode>
<type>Virtuozzo</type>
</env_config>
<1d>c607¥3c6-16b3-214a-9079-8113Fdfal630</i1d>
<name>slIm.256MB</name>
<vt_version>
<platform>Linux</platform>
<architecture>i386</architecture>
<vt_technology>virtuozzo</vt_technology>
</vt_version>
</sample_conf>
<sample_conf xsi:type=""ns2:sample_confType">
<env_config xsi:type="ns3:venv_configType">

Using XML API 55

<on_boot>0</0on_boot>
<offline_management>1</offline_management>
<architecture>i386</architecture>
<0s xsi:type="ns2:osType'">
<platform>linux</platform>
<name/>
</0s>
<type>Vvirtuozzo</type>
</env_config>
<1d>01cb5525-d247-3F45-aa47-0d19eb8285b5</i1d>
<name>confixx</name>
<vt_version>
<platform>Linux</platform>
<architecture>i386</architecture>
<vt_technology>virtuozzo</vt_ technology>
</vt_version>
</sample_conf>
<sample_conf xsi:type="ns2:sample_confType'>
<env_config xsi:type="ns3:venv_configType">
<offline_management>1</offline_management>
<architecture>i386</architecture>
<0s Xxsi:type="ns2:osType'>
<platform>linux</platform>
<name/>
</0s>
<sIm_mode>all</slIm_mode>
<type>Virtuozzo</type>
</env_config>
<1d>c2692640-065c-644c-94cc-1dceb42el6c5</id>
<name>slIm.2048MB</name>
<vt_version>
<platform>Linux</platform>
<architecture>i386</architecture>
<vt_technology>virtuozzo</vt_ technology>
</vt_version>
</sample_conf>
<sample_conf xsi:type=""ns2:sample_confType">
<env_config xsi:type="ns3:venv_configType">
<on_boot>0</0on_boot>
<offline_management>1</offline_management>
<architecture>i386</architecture>
<0s Xxsi:type="ns2:osType'>
<platform>linux</platform>
<name/>
</0s>
<type>virtuozzo</type>
</env_config>
<i1d>b048bcc2-c80c-6d42-9e6d-FFe808d6a83c</id>
<name>basic</name>
<vt_version>
<platform>Linux</platform>
<architecture>i386</architecture>
<vt_technology>virtuozzo</vt_ technology>
</vt_version>
</sample_conf>
</env_samplem>
</data>
</packet>

Using XML API 56

After executing this request, select the sample configuration that you would like to use and
extract its ID from the response message. You will use it later as an input parameter in the
request that will create the Container.

Using XML API 57

Getting a List of OS Templates

A Virtuozzo Container is based on an Operating System template (OS template). When creating
a Container, you must choose and specify the OS template name. The OS templates are shipped
with Virtuozzo Containers software and are installed on the Hardware Node. To get the list of
the available OS templates, use the vzapkgm/ 1 ist call as shown in the following example:

<packet version="4.0.0" id="'32">
<target>vzapkgm</target>
<data>
<vzapkgm>
<list>
<options>
<type>os</type>
</options>
</list>
</vzapkgm>
</data>
</packet>

The output will contain the list of the available OS templates:

<packet 1d="32" time="2007-09-10T10:22:45+0000" priority="0"
version="4.0.0">
<origin>vzapkgm</origin>
<target>vzclientl36-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>

<dst>
<director>gend</director>
</dst>
<data>
<vzapkgm>
<packages>
<package>
<name>redhat-as3-minimal</name>
<version>20061020</version>
Linux
<platform>Linux</platform>
<name/>
</0s>
<arch>x86</arch>
<os_template>1</os_template>
<cached>1</cached>
<uptodate>0</uptodate>
<technology>nptl</technology>
<technology>x86</technology>
<base>1</base>
</package>
</packages>
</vzapkgm>
</data>
</packet>

Choose the OS template from the list and get its name. The template name will be used as a
parameter in the call that will create the Container later. In our example, we have just one
template and its name is "redhat-as3-minimal” (the standard Virtuozzo Containers Red Hat
Linux template).

Using XML AP

58

Populating Container Configuration Structure

After you've selected the configuration sample and the OS template, you have to populate the
Container configuration structure with these and other values. The most commonly used and
important parameters are described in the following table:

Parameter

Description

base sample_id

The sample configuration ID.

os_template/name

The OS template name.

name The Container computer name.

hostname The Container hostname.

veid Virtuozzo-level Container ID. This can be any integer
number greater than 100.

on_boot Start the Container automatically on host system boot.

offline_management

Enable the "offline-management™ feature for the Container.

ip_address

The Container IP address. In the example that will follow,
we will assign the IP address to the default venetO virtual
network adapter.

The venetO adapter is created automatically for every
Container. We could also create our own virtual network
adapter inside a Container and customize it according to our
needs. For more info on how to create and configure virtual
ethernet adapters, see the venv_configType and
net_vethType type specifications in the Parallels Agent
XML API Reference guide.

Using XML API 59

The rest of the configuration parameters (such as disk quota, CPU parameters, etc.) can also be
customized but it should only be done by the experienced users. In this example, we will set all
of the parameters from the table above. We will not modify any of the advanced parameters so
their values will be taken from the sample configuration file. The configuration portion of the
XML request that will create our Container will look like this:

<config>
<name>My-CT10</name>
<hostname>Host-110</hostname>
<base sample_i1d>c607f3c6-16b3-214a-9079-
8113fdfal630</base _sample_id>
<veid>110</veid>
<on_boot>true</on_boot>
<offline_management>true</offline_management>
<os_template>
<name>redhat-as3-minimal</name>
</os_template>
<net_device>
<id>venetO</id>
<ip_address>
<ip>10.17.3.121</ip>
</ip_address>
<host_routed/>
</net_device>
</config>

You can use your own name, hostname, veid, and IP address of course.

Using XML API 60

Creating a Virtuozzo Container

The final step in creating a Container is to build the XML request and send it to Agent. To
create a Container, use the vzaenvm/create call.

The following request will create a Virtuozzo Container:

<packet version="4.0.0" i1d="2">
<target>vzaenvm</target>
<data>
<vzaenvm>
<create>
<config>
<name>My-CT10</name>
<hostname>Host-110</hostname>
<base sample_id>c607f3c6-16b3-214a-9079-
8113fdfal630</base_sample_id>
<veid>110</veid>
<on_boot>true</on_boot>
<offline_management>true</offline_management>
<os_template>
<name>redhat-as3-minimal</name>
</os_template>
<net_device>
<id>venetO</id>
<ip_address>
<ip>10.17.3.121</ip>
</ip_address>
<host_routed/>
</net_device>
</config>
</create>
</vzaenvm>
</data>
</packet>

If the Container is created successfully, you should see the output similar to the following:

<packet i1d="2" time="2007-09-10T11:02:33+0000" priority="4000"
version="4.0.0">
<origin>vzaenvm</origin>
<target>vzclientl139-4fce28dd-0cd3-1345-bb94-3192b940fb90</target>
<dst>
<director>gend</director>
</dst>
<data>
<vzaenvm>
<env>
<parent_eid>00000000-0000-0000-0000-000000000000</parent_eid>
<eid>8d5c125b-e7f5-c448-9c8a-ee7ccab18599</eid>
<status>
<state>1</state>
</status>
<alert>0</alert>
<config/>
<virtual _config>
<veid>110</veid>
<type>Virtuozzo</type>
</virtual_config>

Using XML API 61

</env>
</vzaenvm>
</data>
</packet>

The output contains the Server ID that was assigned to the new Container by Agent, the ID of
the Parent Server (the Hardware Node), and some of the Container information. If you see an
output like that, it means that the Container was created successfully. You can also log in to
your Hardware Node and run the vzlist command from the command prompt. You should
see the new Container in the list.

Using XML API 62

Retrieving Container Configuration

You can retrieve the Container configuration information by executing the simple
vzaenvm/get_info request as follows:

<packet version="4.0.0" id="2">
<target>vzaenvm</target>
<data>
<vzaenvm>
<get_info>
<eid>a5961178-14d2-40cc-ble7-41b562a2f4c6</eid>
<config/>
</get_info>
</vzaenvm>
</data>
</packet>

The eid parameters specifies the Server ID of the Container. The output will contain the
complete Container information including its Parent Server ID (the ID of the Hardware Node),
the status information (running, stopped, etc.), the alert information if any alerts are currently
raised on the Container, and the Container configuration data. The following example is an
output with most of the QoS parameters omitted for brevity:

<packet priority="0" version="4.0.0">
<origin>vzaenvm</origin>
<data>
<vzaenvm>
<env xsi:type="‘envType">
<parent_eid>89e27960-97b8-461f-902F-557b4b16784b</parent_eid>
<eid>3e25fee2-1163-4336-9e74-8b8097936d47</eid>
<status xsi:type="'ns3:env_statusType'>
<state>6</state>
</status>
<alert>0</alert>
<config xsi:type="env_configType'/>
<virtual_config xsi:type="venv_configType'>
<hostname>myhost</hostname>
<name>Mycomputer</name>
<offline_management>1</offline_management>
<on_boot>1</0on_boot>
<os_template>
<version>20061020</version>
<name>redhat-as3-minimal</name>
</os_template>
<ve_root>/vz/root/$VEID</ve_root>
<ve_private>/vz/private/$VEID</ve_private>
<ve_type>
<veild>0</veid>
<type>1</type>
</ve_type>
<qos>
<id>avnumproc</id>
<hard>40</hard>
</qos>
<gos>
<id>cpuunits</id>
<hard>1000</hard>
</qos>
<gos>

Using XML API 63

<id>dcachesize</id>

<hard>1097728</hard>

<soft>1048576</soft>
</qos>

<veid>101</veid>

<type>Virtuozzo</type>

<offline_service>vzpp</offline_service>

<offline_service>vzpp-plesk</offline_service>

<0s xsi:type="ns3:o0sType'>
<platform>Linux</platform>
<kernel>2.6.9-023stab033.6</kernel>
<version>20061020</version>
<name>redhat-as3-minimal</name>

</0s>

<net_device xsi:type="ns4:net vethType">
<id>venetO</id>
<ip_address>

<ip>10.100.23.203</1ip>

</ip_address>
<ns4:host_routed/>

</net_device>

<address>
<ip>10.100.23.203</1ip>

</address>

</virtual_config>
</env>
</vzaenvm>
</data>
</packet>

Configuring a Virtuozzo Container

To modify the configuration parameters of an existing Virtuozzo Container, use the
vzanevm/set request. There are two ways that a container configuration can be modified:

= By specifying the configuration parameters and their new values
= By applying the values from a sample configuration.

The following subsections describe each method in detail.

Using XML API 64

Passing parameters explicitly

The configuration parameters can be passed explicitly by specifying the parameters and the new
values in the request. By using this approach, you can modify a single parameter, a set of
parameters, or the entire configuration information. The request is similar to the create
request that creates a Container. It accepts the Server ID of the Container that you would like to
update, the configuration structure (venv_configType), and a couple of other parameters.
To execute a request, first populate the configuration structure with the parameters and values
that you would like to modify (all of the parameters are optional so you can include or exclude
any of them) and then pass it to Agent using the vzanevm/set request. The following
example assigns a new hostname and adds a search domain to an existing Virtuozzo Container.
It is also adding two DNS servers to the default venetO virtual network adapter.

<packet version="4.0.0" i1d=""34">
<target>vzaenvm</target>
<data>
<vzaenvm>
<set>
<ei1d>3288bb6b-8a49-4230-b565-6ad5521182aa</eid>
<config>
<hostname>myhost</hostname>
<search_domain>ts6.com</search_domain>
<net_device>
<id>venetO</id>
<nameserver>192.168.1.51</nameserver>
<nameserver>192.168.1.52</nameserver>
</net_device>
</config>
</set>
</vzaenvm>
</data>
</packet>

The following example will modify the IP address configuration for the venetO network
adapter, which is the default virtual adapter inside a Container. This modification works in such
a way that the existing IP addresses are first removed from the adapter configuration and then
the passed addresses are added replacing the old ones. To add an IP address without removing
the old ones, first retrieve the existing addresses, then add the new address (or addresses) to the
list, and then include the entire list in the request.

<packet version="4.0.0">
<target>vzaenvm</target>
<data>
<vzaenvm>
<set>
<eid>72145bf0-7562-43d4-b707-cc33d37e3F10</eid>
<config>
<net_device>
<id>venetO</id>
<ip_address>
<ip>10.130.1.1</ip>
</ip_address>
<ip_address>
<ip>10.130.1.2</ip>
</ip_address>
<ip_address>
<ip>10.130.1.3</ip>

Using XML AP

65

</ip_address>
<host_routed/>
</net_device>
</config>
</set>
</vzaenvm>
</data>
</packet>

Using XML API 66

Using values from a sample configuration

The configuration parameters can be passed by specifying the ID of a sample configuration. In
this case, the values will be read from the sample configuration file. Using this approach, you
can modify a single parameter, a set of parameters, all parameters from a selected category, or
an entire configuration. The parameters in Virtuozzo Container configuration are categorized.
Only those parameters that belong to the category applicable_conf can be set using this
functionality. The following request will retrieve the list of the parameters than can be set using
this function.

<packet version="4.0.0"">
<data>
<system>
<get_vocabulary>
<category>applicable_conf</category>
</get_vocabulary>
</system>
</data>
</packet>

The applicable_confT category is the "master” category which contains the "subcategories"
which in turn contain the parameters that can be applied to Containers from sample
configurations. The output of the request above will have the parameters and the categories in it.
To get the list of the categories, you will have to search the returned XML structure for them.
Here's a snippet of the output (the complete output is very long):

<vocabulary>

<name>VZABasicFunctional i ty</name>

<parameter>
<id>diskspace</id>
<measure>1K-blocks</measure>
<type>int</type>
<name>diskspace</name>
<complex>2</complex>
<category>qos</category>
<category>quota</category>
<category>params</category>
<category>ve_local</category>
<category>applicable_conf</category>
<category>resource_alert</category>
<category>counters_vz_quota</category>
<category>virtuozzo</category>
<short>Disk space in 1 kilobyte blocks which can be used</short>
<min>0:0</min>
<max>2147483647:2147483647</max>
<unlimited>2147483647:2147483647</unlimited>
<default>2147483647:2147483647</default>
<basic>1048576:1153434</basic>
<value_type>1</value_type>
<counter_type>0</counter_type>

</parameter>

<category>
<id>quota</id>
<name>Disk Quota</name>
<category>gos</category>
<category>applicable_conf</category>
<category>virtuozzo</category>
<category>resource_alert</category>

Using XML API 67

<short>Disk quota parameters</short>
</category>

</vocabulary>
<vocabulary>
<name>generic</name>
<category>
<id>general_conf</id>
<name>General</name>
<category>applicable_conf</category>
<short>General applicable Environment parameters (in Env config
file)</short>
</category>
<category>
<id>gos</id>
<name>Q0S</name>
<category>applicable_conf</category>
<short>Quality Of Service (Q0S) parameters (UBC, Disk quota,
CPU) .</short>
</category>
<vocabulary>

The category information is contained inside the category nodes that are the children of the
<vocabulary> node. The id elements contain the names of the parameters or categories.

Let's say now that we want to take all of the QoS parameters from a sample configuration file
and apply their values to an existing Container. First, we have to get the name of the category
from the output above. It is the last category in the example and its name is qos. After that we
will need the sample configuration ID that we would like to get the QoS parameters from.
Finally, we need the Server ID of the target Container. The request that will apply these
parameters to the Container configuration is shown below:

<packet version="4.0.0" id="'654">
<target>vzaenvm</target>
<data>
<vzaenvm>
<set>
<eid>6dbd99dc-f212-45de-a5f4-ddb78a2b5280</eid>
<apply_config>
<sample_conf>f8e96630-7fd8-4eee-93b2-
3ad7b6b53916</sample_conf>
<category>qos</category>
</apply_config>
</set>
</vzaenvm>
</data>
</packet>

As a result, all QoS parameter values in the configuration of the target Container will be
replaced with the QoS values from the specified sample configuration.

Using XML API 68

Destroying a Virtuozzo Container

When you destroy a Container, all its data is removed from the Hardware Node and cannot be
recovered. You can only destroy a Container that is currently stopped. To destroy a Container,
execute the following request (the eid element contains the Server ID of the Container to be
destroyed):

<packet version="4.0.0" id="2">
<target>vzaenvm</target>
<data>
<vzaenvm>
<destroy>
<ei1d>ab5961178-14d2-40cc-ble7-41b562a2f4c6</eid>
</destroy>
</vzaenvm>
</data>
</packet>

Performance Monitor

Performance Monitor is an operator that allows to monitor the performance of the Hardware
Node and Virtuozzo Containers. By monitoring the utilization of the system resources, you can
acquire an important information about your Virtuozzo system health. Performance Monitor can
track a range of processes in real time and provide you with the results that can be used to
identify current and potential problems. It can assist you with the tracking of the processes that
need to be optimized, monitoring the results of the configuration changes, identifying the
resource usage bottlenecks, and planning of upgrades.

The performance data is collected by Periodic Collectors, the special operators that run on the
server side at all times. Periodic collectors collect the data at the predefined time intervals
(several seconds) and put it into a storage buffer where it can be read by other operators.
Performance Monitor is capable of obtaining this data in real time and sending it back to the
client on demand or periodically. The rest of this section describes how to use Performance
Monitor in your client programs.

Using XML API 69

Classes, Instances, Counters

First, we have to discuss the Performance Monitor terminology.
Performance Class

Performance class is a type of the system resource that can be monitored. This includes CPU,
memory, disk, network, etc. A class is identified by ID. You obtain the IDs of the available
classes by retrieving them from the Agent vocabulary. Each performance class is represented by
a category in the vocabulary. To distinguish the class categories from other categories, they all
belong to another category named counters. Different types of servers (generic, virtuozzo)
have their own sets of performance classes. The following are examples of performance class
entries in the Agent vocabulary.

Generic performance class (compatible with physical servers only):

<category>
<id>counters_net</id>
<category>generic</category>
<category>counters</category>
<short>Network usage</short>
<long>Network usage related parameters</long>
</category>

Virtuozzo performance class (compatible with Virtuozzo Containers only):

<category>
<id>counters_vz_net</id>
<category>virtuozzo</category>
<category>counters</category>
<short>Network usage</short>
<long>Container network-related counters</long>
</category>

The following table describes the properties of a performance class:

Property Description
id The unique class ID
category The name of the parent vocabulary category.

The counters category indicates that this vocabulary entry is a
performance class.

The generic category indicates that this class is compatible
with generic servers (physical machines). Classes compatible
with Virtuozzo Containers belong to the virtuozzo category.

short Short description of the class.

long Long description of the class.

Using XML API 70

The following examples shows how to retrieve the list of the available classes from the
vocabulary:

Input

<packet version="4.0.0" i1d="2">
<data>
<system>
<get_vocabulary>
<category>counters</category>
</get_vocabulary>
</system>
</data>
</packet>

The output will contain all vocabulary sections with the entries that belong to the counters
category. The sections that don't have any classes will be empty and can be ignored (for
example, the very first VZABackupManager section in the output below). When parsing the
returned XML packet, search for the entries that have the
<category>counters</category> element in them. The other category element
specifies the server type with which this performance class is compatible. The generic
category applies to physical machines. The virtuozzo category applies to Virtuozzo
Containers. If you want to monitor the Hardware Node performance, use generic counters.
To monitor a Virtuozzo Container, use virtuozzo counters. An attempt to use a counter that
is not compatible with the type of the server will result in error.

Output

<?xml version="1.0" encoding="UTF-8"?><packet
xmIns:nsl="http://www.swsoft.com/webservices/vz1/4.0.0/system"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance' version="4.0.0"
priority="0" 1d="8c47693a5et4aelre00">
<origin>gend</origin>
<target>vzclient4-58548599-9a43-0d47-8734-5eee7c2779al</target>
<dst>
<director>gend</director>
</dst>
<data>
<system>
<vocabulary>
<name>VZABackupManager</name>
</vocabulary>
<vocabulary>
<name>VZABasicFunctional i ty</name>
<category>
<id>counters_vz_cpu</id>
<category>virtuozzo</category>
<category>counters</category>
<short>CPU usage</short>
<long>Container CPU-related counters</long>
</category>
<category>
<id>counters_vz_ubc</id>
<category>virtuozzo</category>
<category>counters</category>
<short>User Bean Counters (UBC)</short>
<long>User Bean Counters (UBC)</long>
</category>

Using XML API 71

<category>
<id>counters_vz_ net</id>
<category>virtuozzo</category>
<category>counters</category>
<short>Network usage</short>
<long>Container network-related counters</long>
</category>
<category>
<id>counters_vz_quota</id>
<category>virtuozzo</category>
<category>counters</category>
<short>Quotas</short>
<long>Disk quota parameters</long>
</category>
<category>
<id>counters_vz_loadavg</id>
<category>virtuozzo</category>
<category>counters</category>
<short>Load average</short>
<long>Container load average parameters</long>
</category>
<category>
<id>counters_vz_system</id>
<category>virtuozzo</category>
<category>counters</category>
<short>System information</short>
<long>System-related counters</long>
</category>
<category>
<id>counters_vz_slIm</id>
<category>virtuozzo</category>
<category>counters</category>
<short>SLM parameters</short>
<long>SLM-related parameters</long>
</category>
<category>
<id>counters_vz_memory</id>
<category>virtuozzo</category>
<category>counters</category>
<short>Memory usage</short>
<long>Memory usage parameters</long>
</category>
<category>
<id>counters_vz_hw_net</id>
<category>generic</category>
<category>counters</category>
<postfix>virtuozzo</postfix>
<short>Virtuozzo network usage</short>
<long>Network-related counters</long>
</category>
</vocabulary>
<vocabulary>
<name>VZAMigrator</name>
</vocabulary>
<vocabulary>
<name>VZANetworkManager</name>
</vocabulary>
<vocabulary>
<name>VZAOpCompat</name>
</vocabulary>

Using XML AP

72

<vocabulary>
<name>VZAPackageManager</name>

</vocabulary>

<vocabulary>
<name>VZASupport</name>

</vocabulary>

<vocabulary>
<name>VZAUp2date</name>

</vocabulary>

<vocabulary>
<name>VZLAlertManager</name>

</vocabulary>

<vocabulary>
<name>VZLAuthEngine</name>

</vocabulary>

<vocabulary>
<name>VZLBackupManager</name>

</vocabulary>

<vocabulary>
<name>VZLComputerManager</name>

</vocabulary>

<vocabulary>
<name>VZLDeviceManager</name>

</vocabulary>

<vocabulary>
<name>VZLEnvSampleManager</name>

</vocabulary>

<vocabulary>
<name>VZLL icenseManager</name>

</vocabulary>

<vocabulary>
<name>VZLMigrator</name>

</vocabulary>

<vocabulary>
<name>VZLPackageManager</name>

</vocabulary>

<vocabulary>
<name>VZLReslLog</name>

</vocabulary>

<vocabulary>
<name>VZLScheduler</name>

</vocabulary>

<vocabulary>
<name>VZLServerGroup</name>

</vocabulary>

<vocabulary>
<name>VZL ServiceManager</name>

</vocabulary>

<vocabulary>
<name>backup_deserializer</name>

</vocabulary>

<vocabulary>
<name>filer</name>

</vocabulary>

<vocabulary>
<name>restore_serializer</name>

</vocabulary>

<vocabulary>
<name>Vvzaproxy</name>

</vocabulary>

Using XML API

73

<vocabulary>
<name>vzaproxyinsve</name>
</vocabulary>
<vocabulary>
<name>vzIfile_deserializer</name>
</vocabulary>
<vocabulary>
<name>vzIfile_serializer</name>
</vocabulary>
<vocabulary>
<name>vzlin_backup_serializer</name>
</vocabulary>
<vocabulary>
<name>vzlin_restore_deserializer</name>
</vocabulary>
<vocabulary>
<name>vzlin_selective_restore_deserializer</name>
</vocabulary>
<vocabulary>
<name>gener ic</name>
<category>
<id>counters_cpu</id>
<category>generic</category>
<category>counters</category>
<short>CPU usage</short>
<long>Hardware Node CPU related parameters</long>
</category>
<category>
<id>counters_disk</id>
<category>generic</category>
<category>counters</category>
<short>Disk usage</short>
<long>Disk usage related parameters</long>
</category>
<category>
<id>counters_memory</id>
<category>generic</category>
<category>counters</category>
<short>Memory usage</short>
<long>Memory usage related parameters</long>
</category>
<category>
<id>counters_net</id>
<category>generic</category>
<category>counters</category>
<short>Network usage</short>
<long>Network usage related parameters</long>
</category>
<category>
<id>counters_loadavg</id>
<category>generic</category>
<category>counters</category>
<short>Load average</short>
<long>CPU usage related parameters</long>
</category>
<category>
<id>counters_system</id>
<category>generic</category>
<category>counters</category>
<short>System info</short>

Using XML API 74

<long>System info related parameters</long>
</category>
</vocabulary>
</system>
</data>
</packet>

Class Instance

While class identifies the type of the system resource, the term "instance” refers to a particular
device when multiple devices of the same type exist in the system. For example, a network
interface in general is a class, but each network card installed in the system is an instance of that
class. Each class has at least one instance, but not all classes may have multiple instances.

Performance Counter

Counters are used to measure various aspects of a performance, such as the CPU times, network
rates, disk usage, etc. Each class has its own set of counters. Counter data is comprised of the
current, minimum, maximum, and average values. You retrieve the list of counters available for
a particular class from the vocabulary by specifying the class name as the criteria. Performance
counters are stored as parameters in a vocabulary. Each counter has a category property that
contains the name of the performance class this counter belongs to. The following is an example
of a performance counter entry in a vocabulary:

<parameter>
<id>counter_cpu_system</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>System</short>
<long>System CPU time</long>
<measure>seconds</measure>

</parameter>

The following table describes the properties of a performance counter:

Property Description
id A string containing the unique counter identifier.
category A string containing the name of the parent performance class (in

general, the name of the parent vocabulary category).

type A string specifying the data type of the counter values. The
possible values are:

int -- integer.

float -- floating point.

value_type A numeric representation of the counter data type (used internally
by Agent).

Using XML AP

75

counter_type

An integer representing the counter type. Depending on the type,
the values of the counter can be interpreted differently:

0 -- Periodic counter. Contains the minimum, maximum, and
average values for the given time period.

1 -- Incremental counter. The value of an incremental counter is
always higher or equals to the previous value. A good example is
a network counter that counts the number of bytes the interface
has sent or received. The minimum, maximum, and average
values are the same and represent the difference between the
current value and the value from the previous report.

2 -- Cumulative counter. The minimum, maximum, and average
values are the same and represent the total accumulated value
since the server was started. On server restart, counter values are
reset to zero.

short Short counter description.
long Long counter description.
measure Units of measure (seconds, percent).

Using XML API 76

You retrieve the list of the counters available for a particular class from the vocabulary by
specifying the class name as the criteria. The following example retrieves all counters for the
counters_vz_cpu class:

Input

<packet version="4.0.0" id="2">
<data>
<system>
<get_vocabulary>
<category>counters_vz_cpu</category>
</get_vocabulary>
</system>
</data>
</packet>

Output

The output will contain all vocabulary sections with the entries that belong to the
counters_vz_cpu category. The sections that don't have any counters will be empty and
can be ignored. When parsing the returned XML packet, search for the entries that have the
<category>counters_vz_cpu</category> element in them.

<packet xmlns:nsl="http://www.swsoft.com/webservices/vz1/4.0.0/system"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
id=""1bc470e041dt390crbf4" priority="0" version="4.0.0">
<origin>gend</origin>
<target>vzclient2-ac6ab656-8558-0949-a605-f47cfc63cd9c</target>
<dst>
<director>gend</director>
</dst>
<data>
<system>
<vocabulary>
<name>VZABackupManager</name>
</vocabulary>
<vocabulary>
<name>VZABasicFunctional i ty</name>
<parameter>
<id>counter_cpu_system</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>System</short>
<long>System CPU time</long>
<measure>seconds</measure>
</parameter>
<parameter>
<id>counter_cpu_user</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>User</short>
<long>User CPU time</long>
<measure>seconds</measure>
</parameter>
<parameter>
<id>counter_cpu_idle</id>

Using XML API 7

<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>ldle</short>
<long>ldle CPU time</long>
<measure>seconds</measure>

</parameter>

<parameter>
<id>counter_cpu_nice</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>Nice</short>
<long>Nice CPU time</long>
<measure>seconds</measure>

</parameter>

<parameter>
<id>counter_cpu_starvation</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>Starvation</short>
<long>Starvation CPU time (Difference between guaranteed CPU

time and used CPU time)</long>

<measure>seconds</measure>

</parameter>

<parameter>
<id>counter_cpu_system states</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>0</counter_type>
<short>System states</short>
<long>System CPU time (percents)</long>
<measure>percents</measure>

</parameter>

<parameter>
<id>counter_cpu_user_states</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>0</counter_type>
<short>Use statesr</short>
<long>User CPU time (percents)</long>
<measure>percents</measure>

</parameter>

<parameter>
<id>counter_cpu_idle_states</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>0</counter_type>
<short>ldle states</short>
<long>ldle CPU time (percents)</long>
<measure>percents</measure>

</parameter>

<parameter>

Using XML API 78

<id>counter_cpu_nice_states</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>0</counter_type>
<short>Nice states</short>
<long>Nice CPU time (percents)</long>
<measure>percents</measure>
</parameter>
<parameter>
<id>counter_cpu_starvation_states</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>0</counter_type>
<short>Starvation states</short>
<long>Starvation CPU time (Difference between guaranteed CPU
time and used CPU time) (percents)</long>
<measure>percents</measure>
</parameter>
<parameter>
<id>counter_cpu_used</id>
<category>counters_vz_cpu</category>
<category>top_counters</category>
<type>Ffloat</type>
<value_type>0</value_type>
<counter_type>0</counter_type>
<short>CPU used</short>
<long>Total CPU usage (percents)</long>
<measure>percents</measure>
</parameter>
<parameter>
<id>counter_cpu_share used</id>
<category>counters_vz_cpu</category>
<category>top_counters</category>
<type>float</type>
<value_type>0</value_type>
<counter_type>0</counter_type>
<short>CPU share used</short>
<long>The ratio of CPU time consumed by environment to current
limit (percents)</long>
<measure>percents</measure>
</parameter>
<parameter>
<id>counter_cpu_limit</id>
<category>counters_vz_cpu</category>
<type>float</type>
<value_type>0</value_type>
<counter_type>0</counter_type>
<short>CPU Limit</short>
<long>CPU limit of the share the Environment will get</long>
<measure>percents</measure>
</parameter>
</vocabulary>
<vocabulary>
<name>VZAMigrator</name>
</vocabulary>
<vocabulary>
<name>VZANetworkManager</name>
</vocabulary>

Using XML API 79

<vocabulary>
<name>VZAOpCompat</name>

</vocabulary>

<vocabulary>
<name>VZAPackageManager</name>

</vocabulary>

<vocabulary>
<name>VZAUp2date</name>

</vocabulary>

<vocabulary>
<name>VZLAlertManager</name>

</vocabulary>

<vocabulary>
<name>VZLAuthEngine</name>

</vocabulary>

<vocabulary>
<name>VZLBackupManager</name>

</vocabulary>

<vocabulary>
<name>VZLServer_group</name>

</vocabulary>

<vocabulary>
<name>VZLDeviceManager</name>

</vocabulary>

<vocabulary>
<name>VZLEnvSampleManager</name>

</vocabulary>

<vocabulary>
<name>VZLFileManager</name>

</vocabulary>

<vocabulary>
<name>VZLL icenseManager</name>

</vocabulary>

<vocabulary>
<name>VZLMigrator</name>

</vocabulary>

<vocabulary>
<name>VZLPackageManager</name>

</vocabulary>

<vocabulary>
<name>VZLResLog</name>

</vocabulary>

<vocabulary>
<name>VZLScheduler</name>

</vocabulary>

<vocabulary>
<name>VZL ServiceManager</name>

</vocabulary>

<vocabulary>
<name>Vvzaproxy</name>

</vocabulary>

<vocabulary>
<name>Vvzaproxyinsve</name>

</vocabulary>

<vocabulary>
<name>generic</name>

</vocabulary>

</system>
</data>
</packet>

Using XML API 80

Getting a Performance Report

Now that you know what classes, instances, and counters are, you a ready to use Performance
Monitor. In this section, we will retrieve a single on-demand performance report. In the section
that follows, we will use the monitor to receive periodic reports.

The first thing that you have to do is select the performance aspect that you would like to
monitor. You do that by selecting the name of the class and the name(s) of the counters from the
vocabulary. Let's say that we want to get the current network usage by a Virtuozzo Container.
The name of the class is counters_vz net. The names of the counters are
counter_net_incoming_bytes and counter_net_outgoing_bytes. The request,
therefore, will look similar to the following:

<packet version="4.0.0" i1d="2">
<target>perf_mon</target>
<data>
<perf_mon>
<get>
<eid_list>
<eid>6d7d3a7c-b7a7-3745-b7cb-0e56205120al</eid>
</eid_list>
<class>
<name>counters_vz_ net</name>
<instance>
<counter>counter_net_incoming_bytes</counter>
<counter>counter_net_outgoing_bytes</counter>
</instance>
</class>
</get>
</perf_mon>
</data>
</packet>

Output

<?xml version="1.0" encoding="UTF-8"?><packet
xmlns:ns2=""http://www.swsoft.com/webservices/vz1/4.0.0/types"
xmIns:nsl1="http://www.swsoft.com/webservices/vz1/4.0.0/perf_mon™
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance' version="4.0.0"
priority="0" 1d="5c47838ee6t3d6cre0" time="2008-01-08T14:55:36+0000"">
<origin>perf_mon</origin>
<target>vzclientl9-c56d5led-cblc-fa4c-b131-3115d3700c68</target>
<dst>
<director>gend</director>
</dst>
<data>
<perf_mon>
<data xsi:type=""ns2:perf_dataType">
<eid>6d7d3a7c-b7a7-3745-b7cb-0e56205120al</eid>
<interval xsi:type="ns2:intervalType'>
<start_time>2008-01-08T14:55:06+0000</start_time>
<end_time>2008-01-08T14:55:26+0000</end_time>
</interval>
<class>
<name>counters_vz_net</name>
<instance>
<name>0</name>
<counter>

Using XML AP

81

<name>counter_nhet_incoming_ bytes</name>
<value>
<avg>0</avg>
<min>0</min>
<max>0</max>
<cur>0</cur>
</value>
</counter>
<counter>
<name>counter_net_outgoing_ bytes</name>
<value>
<avg>0</avg>
<min>0</min>
<max>0</max>
<cur>0</cur>
</value>
</counter>
</instance>
<instance>
<name>1</name>
<counter>
<name>counter_net_incoming_ bytes</name>
<value>
<avg>0</avg>
<min>0</min>
<max>0</max>
<cur>0</cur>
</value>
</counter>
<counter>
<name>counter_nhet_outgoing_ bytes</name>
<value>
<avg>0</avg>
<min>0</min>
<max>0</max>
<cur>0</cur>
</value>
</counter>
</instance>

</class>
</data>
</perf_mon>

</data>
<src>

<director>gend</director>

</src>

</packet>

Using XML API 82

Receiving Periodic Reports

In this section, we will use Performance Monitor to receive the reports on a periodic basis. This
functionality is provided by the perf_mon/start_monitor call. The following sample
shows how to start monitoring of the CPU consumption by the specified server:

<packet version="4.0.0" i1d="2">
<target>perf_mon</target>
<data>
<perf_mon>
<start_monitor>
<eid_list>
<ei1d>39f40723-b315-8c41-8de9-7beefd5021fe</eid>
</eid_list>
<class>
<name>counters_vz_cpu</name>
<instance>
<counter>counter_cpu_system</counter>
</instance>
</class>
<report_period>20</report_period>
</start_monitor>
</perf_mon>
</data>
</packet>

The call above starts the monitor with the 20 second intervals, which means that the client will
be receiving a report every 20 seconds. The eid parameter contains the Server ID of the
Virtuozzo Container to monitor. We are using just one counter from the counters_vz_cpu
class in our call. If you wish, you can use all counters from this class. Simply remove the
instance element together with the counter element. You can also add other classes and
their counters and even monitor multiple servers at the same time (more on that later).

The first response that we receive from Agent contains the monitor ID. We will need this ID to
stop the monitor later.

<packet i1d="2" version="4.0.0">
<origin>perf_mon</origin>
<data>
<perf_mon>
<1d>491d81bl-1cae-43ec-8b7c-41d873d15991</id>
</perf_mon>
</data>
</packet>

After that, the collector starts sending us the reports. The following is an example of one of the
reports:

<packet i1d="2" priority="0" version="4.0.0">
<origin>perf_mon</origin>
<data>
<perf_mon>
<data>
<eid>4d4dcb0c-9cle-4f7c-af81-e33db3289f61</eid>
<class>counters_cpu</class>
<interval>
<start_time>2006-06-20T05:01:09+0000</start_time>
<end_time>2006-06-20T05:01:30+0000</end_time>
</interval>

Using XML API 83

<instance>
<name></name>
<counter>
<name>counter_cpu_system</name>
<value>
<avg>477</avg>
<min>477</min>
<max>477</max>
<cur>2504250</cur>
</value>
</counter>
</instance>
</data>
</perf_mon>
</data>
</packet>

As you can see, the report contains the current, average, minimum, and maximum values. Since
this is an incremental counter (see previous section), the current value is the total system CPU
time (the time spent by the processor to execute operating system tasks), and the average,
minimum, and maximum values all contain the difference (the increase) between the current
value and the value from the last report.

Because you are receiving the reports from the monitor, doesn't mean that you cannot send other
requests and receive other replies at the same time. You can do anything that you would
normally do, like sending on-demand requests or even starting another monitor or monitors. To
correlate request and response messages, use the ID attribute. All responses that belong to a
particular request will have the same message ID as the message ID of the request.

To stop the monitor, send the following message, passing the monitor 1D:

<packet version="4.0.0" i1d="2">
<target>perf_mon</target>
<data>
<perf_mon>
<stop_monitor>
<id>491d81bl-1cae-43ec-8b7c-41d873d15991</i1d>
</stop_monitor>
</perf_mon>
</data>
</packet>

Using XML API 84

Monitoring Multiple Environments

Performance Monitor allows you to monitor multiple servers at the same time. For example, you
can monitor a Hardware Node and its Virtuozzo Containers simultaneously. One important
requirement here is that the performance classes and the counters that you will select for each
server type must be compatible with all of them. This means that if you select a class from the
"generic" category, it must also exist in the "virtuozzo" category. If you mix classes and
counters that exist in one category but don't exist in the other, you will get unpredictable results.
One way around this is to include only the names of the classes and omit the names of the
counters. This way, the names of the counters will be retrieved automatically by Performance
Monitor, so the reports will contain the "correct" counters for each server type, i.e the report
will show different counters for different server types.

There's one more parameter that the start_monitor call takes: filter. You can use this
parameter when you want to monitor all available servers of a particular type but exclude all
other servers. In order to do that, do not specify Server IDs but specify the server types to
exclude from monitoring. For example, if you want to monitor only the Virtuozzo Containers
but you want to exclude the Hardware Node, supply the empty eid element and include the
filter element containing the value "generic”. If you include the empty eid element and
don't specify a filter, then all available servers of all types will be monitored.

Events and Alerts

Event reporters are operators that monitor the system for critical system events, such as a server
status change or server configuration change. They also allow to subscribe to and receive
automatic notifications if an alert is raised on a server due to resource allocation problems.
These operators are subscription-based, meaning that the client must subscribe to the event
notification services in order to receive notifications. The following types of subscriptions are
currently available:

Subscription Name Description

env_status_subscription Triggers when the status of a server changes, including
state and transition changes. The event reports the status
change for every server that Agent is aware of. If you
subscribe for the event on the Master Node in a Virtuozzo
group, you will receive the notifications about the status
changes of every server in the entire group.

env_config_subscription Triggers when the configuration of a server changes. If
subscribed on a Master Node in a group, reports the
changes across the entire group hierarchy.

alerts_subscription Reports resource allocation problems such as
approaching or breaking certain limits.

Using XML API 85

To subscribe to an event notification, make the following call:

<packet version="4.0.0" id="2">
<data>
<system>
<subscribe>
<name>subscription_nhame</name>
</subscribe>
</system>
</data>
</packet>

Where subscription_name is the name of one of the event subscriptions from the table above.
As soon as the event takes place (or an alert is raised), a message will be sent to your client
program containing the event data. You recognize the event notification message by examining
the value of the target element in the message header, which should contain the name of the
subscription, i.e. the same name that you passed to the call when you subscribed to the event.
Please remember that any message may have more than one target element; when searching
for a particular target, make sure to look through all of them.

The following examples illustrates a notification message received when one of the servers was
manually stopped. The message contains the ID of the server that generated the event, the text
message that may be presented to the user, and the event data (old/new state and transition
codes). Note that one of the target elements contains the same value as the one we used in
the name element in the request, which is env_status_subscription. Please also note
that the inner data structure contains the elements specific to this event type -- in this
particular case, the env_status_event element.

Input

Subscribing to the status change events.

<packet version="4.0.0" id="2">
<data>
<system>
<subscribe>
<name>env_status_subscription</name>
</subscribe>
</system>
</data>
</packet>

Output

A notification that was received after a server was shut down.

<packet version="4.0.0">
<target>events_subscription</target>
<target>env_status_subscription</target>
<data>
<event>
<ei1d>849c9be9-5Fbb-4e7d-b100-F841F86c150e</eid>
<time>1155317636</time>
<source></source>
<category>env_status_subscription</category>
<sid>XXX</sid>
<data>
<env_status_event>
<eid>62ec514e-bc38-4aee-830d-cc802ee2aadd</eid>

Using XML API 86

<new>
<state>3</state>
</new>
<old>
<state>3</state>
<transition>5</transition>
</old>
</env_status_event>
</data>
<info>
<message>

RW52axXJvbm11bnQgJWVpZCUgc3RhdHVZz IGNoYW5nZWQgZnJvbSAIb2xkJSBObyAlbmV3JQ
</message>
<name></name>
<translate/>
<parameter>

<message>NjJ1YzUxXNGUtYmMzOCOOYWV ILTgzMGQtY2MAMDJIIZTIhYWRk</message>
<name>eid</name>
</parameter>
<parameter>
<message>Mw==</message>
<name>new</name>
<translate/>
</parameter>
<parameter>
<message>Mw==</message>
<name>old</name>
<translate/>
</parameter>
</info>
</event>
</data>
</packet>

A subscription remains in effect for the duration of the session. If a client program disconnects
and then re-connects again, the subscription is canceled and the client has to subscribe again.
The events that might have happened during that time will be unknown to this client. However,
the majority of the events are logged internally by Agent. The even log can be accessed using
the event_log interface.

To stop receiving the event notifications, use the following call:

Input
<packet version="4.0.0" i1d="2">
<data>
<system>
<unsubscribe>
<name>subscription_name</name>
</unsubscribe>
</system>
</data>

</packet>

Using XML API 87

Request Routing

Request routing is an Agent feature that allows to specify the target server to which a request
message should be sent. There are two types of request routing that you can use in your client
applications:

= Local routing -- allows to route a request from the Hardware Node to any of the Virtuozzo
Containers.

= Virtuozzo group routing -- allows to route a request from the Master Node in a Virtuozzo
group to any of the Slave Nodes or Virtuozzo Containers.

Local Routing

Most of the XML API calls that deal with Virtuozzo Containers have an input parameter which
is used to specify the Server ID on which the operation should be performed. For example,
when you start or stop a Virtuozzo Container, you pass its Server ID to the call. In contrast, calls
that allow to perform operations on both the Containers and the Hardware Node are usually
missing this parameter. For example, the filer/1ist call (lists files and directories) does not
have the Server ID parameter. So, how do you get file listing for a particular Virtuozzo
Container? That's where request routing comes in. You can tell Agent to route the request to the
specified Container and execute it there instead of executing it on the Hardware Node level.
You accomplish this by including the dst/host (destination host) parameter in the Agent
request message header to contain the Server ID of the target Container. By not including the
dst/host parameter in the message header, you are instructing Agent to perform the
operation on the Hardware Node itself. The following samples illustrate how to use the request
routing feature.

In the first sample, the request message does not have the request routing information, so the
response packet will contain a list of files located in the specified folder on the Hardware Node.

Input

<packet version="4.0.0">
<target>filer</target>
<data>
<filer>
<list>
<cwd>Lw==</cwd>
<path>Lw==</path>
</list>
</filer>
</data>
</packet>

The request message in the second sample has the request routing information. The destination
Server ID is included in the request using the dst/host element in the message header. As a
result, the request will be sent to the specified Container. The result will then be routed back to
the client and will contain a list of files located in the specified folder of the specified Virtuozzo
Container.

<packet version="4.0.0"">
<dst>
<host>3b81950a-981d-b94d-bdel-647dF39674F1</host>
</dst>

Using XML API 88

<target>filer</target>
<data>
<fFiler>
<list>
<cwd>Lw==</cwd>
<path>Lw==</path>
</list>
</filer>
</data>
</packet>

When exactly do you use request routing? Here are a few simple rules:

= Use request routing if you want to perform an operation on a Virtuozzo Container but the
API call that you want to use doesn't have an input parameter to specify the Server ID.

= Don't use request routing if a call has a parameter to specify the Server ID. If you try to
route such a request to a Container by mistake, it will fail with a message saying that this
functionality is not supported.

There are only a few interfaces in the Agent XML API that utilize the request routing
functionality. Here's the list:

Class name Description

computerm Computer management. Provides methods for managing
Hardware Nodes and Virtuozzo Containers as if they were
regular physical machines.

filer Provides methods for managing files and directories on
Hardware Nodes and Virtuozzo Containers.

firewallm Firewall management (Linux only).

processm System processes management. Provides methods for

managing system processes and for executing programs on
Hardware Nodes and Virtuozzo Containers.

servicem Services management. Provides calls for managing the
operating system services on Hardware Nodes or Virtuozzo
Containers.

userm Provides calls for managing users and groups on Hardware

Nodes and Virtuozzo Containers.

Using XML API 89

To use request routing in your client applications, you don't have to manually install Agent
inside a Container. All the necessary Agent components are installed in a Container
automatically when it is created.

Request routing in a Virtuozzo group

In a Virtuozzo group the request routing feature can be used to specify the target Slave Node or
any of the Virtuozzo Containers. For example, if you are connected to the Master Node in a
Virtuozzo group but would like to get the list of Virtuozzo Containers from a particular Slave
Node, you can do that by routing the request to that Server using the dst/host parameter.

If the destination server is a Slave Node (physical machine), you can route any request to it. In
this case the list of the interfaces that can utilize the request routing functionality is not limited
to the short list that we've included earlier in this section. If the destination is a Virtuozzo
Container, use request routing only with the interfaces listed in the table above.

Please note that you can only route Agent requests to other Nodes in a Virtuozzo group if you
are connected to the Master Node. You cannot route requests between Slave Nodes. Please also
note that request routing in a Virtuozzo group can be an expensive operation. The destination
server can be located deep inside the group hierarchy, so by the time the message travels to its
destination and back, a significant amount of the group resources may be used. Don't overuse it.
Whenever possible, instead of using request routing in a Virtuozzo group, try connecting to a
Slave Node directly and execute the call there.

90

CHAPTER 4

Using SOAP API

The material in this chapter is intended for developers who would like to develop client
applications using SOAP API. To use this documentation productively, you should have a basic
idea of what SOAP is, some programming experience, and a knowledge of one of the
programming languages such as C#. We also assume that you are comfortable working with
XML and have some experience working with XML Schema language (also referred to as XML
Schema Definition or XSD).

In This Chapter

INEFOTUCTION ...ttt sttt sttt e sttt e nbesbeeeesbeeneeneenae s 90
Creating a Simple Client APPlICALIONccoiiiiieic e 91
Developing Agent SOAP CHENES.......oiiiriieiere ettt ees 106
Managing Virtu0zZzo CONLAINEISccceiieiieeiieeieeseeseeseesaeesteeseeesreesseesneesnaesnseereenseesseens 112
Other SOAP Clients and Their KNOWN ISSUESccieiiiiiniiie e 157
TTOUDIESNOTING ...t 159

Introduction

This section provides an introduction to the Agent SOAP API.

Overview

Parallels Agent SOAP API is implemented as industry-standard Web Services. With SOAP
API, you build your client applications using one of the third-party development tools that can
generate client code from the provided WSDL documents. The code generated from WSDLSs is
a set of objects in your application's native programming language. You work with data
structures using object properties and you make API calls by invoking object methods.

The SOAP API shares XML Schema with the Agent XML API, so the basic structure of the
input and output data is the same in both APIs. The Using XML API chapter (see page 21)
provides general information on the Agent XML schema, the detailed description of the XML
API request and response packets, and other important information. The Parallels Agent XML
Programmer's Reference guide provides a complete XML API reference. When working with
SOAP API, use the XML API reference material to find the descriptions of the calls, their input
and output parameters, and XML code examples.

Using SOAP API 91

Key Features

The following describes the key SOAP API features:

= Supports the full set of the Agent on-demand functionality.

= Provides WSDL documents for automatic code generation.

= Supports a variety of third-party SOAP clients, including Microsoft .NET Framework.
= Supports SOAP 1.1 and WSDL 1.1.

Limitations

SOAP API in the Agent protocol version 4.0.0 has the following limitations:

= Operates only over the HTTPS protocol.
= Does not support asynchronous request processing.

Generating Client Code from WSDL

When programming with the SOAP API, you will need the location of the WSDL documents in
order to generate proxy classes. The WSDLs can be found at the location that uses the following
format, where VERSION is the Agent protocol version humber:

http://www.swsoft.com/webservices/vza/VERSION/VZA wsdl
The URL to the current version 4.0.0 is as follows:
http://www.swsoft.com/webservices/vza/4.0.0/VZA . wsdl

Your SOAP client should have a documentation describing how to generate proxy classes from
WSDL. Please follow the instructions and supply the URL of the Agent WSDL documents
when asked to do so. If you are using Microsoft Visual Studio .NET, then you will find
instructions on how to generate and use the code in the Creating a Simple Client section of this
guide (see page 91).

Creating a Simple Client Application

This section walks you through the basics of creating a simple client application using Agent
SOAP API. We will use Microsoft Visual Studio .NET and will write our program in C#.

Using SOAP API 92

Step 1: Choosing a Development Project

You can choose any type of Visual Studio .NET C# project for your application. Your choice
depends on your application requirements only. For our sample program, let's select C#
Windows console application project and call it VzSimpleClient.

1 In Microsoft Visual Studio .NET, select File > New > Project. The New Project windows
opens.

2 In the Project Types tree, select Visual C# > Windows and then select Console Application in
the Templates pane.

3 Enter VzSimpleClient as the name for your project and choose a location for your
project files and click OK.

Note: If you are using Microsoft Visual Studio .NET 2005 and if your default project files
location is set to C:\Documents and Settings\user_name\My
Documents\Visual Studio 2005\Projects\project_name\. ., you will have
to choose a location with a shorter path. The reason is that there's an issue with Visual Studio
2005 C# method generation from WSDL (we will discuss the issue in detail in the Generating
Stubs From WSDL section). As a solution, we will create a batch file that will fix the problem.
The file will be placed into and run from the directory that contains the Web References
folder (usually .\Projects\project name\project name\), but because of the 256
character command line limit imposed by the Microsoft NTFS file system, the full pathname
(including the path and the file name) must fit within this limit or the C# compiler will not be
able to run the batch file.

Step 2: Generating Proxy Classes From WSDL

1 Inthe Solution Explorer pane, select the VzSimpleClient project.

2 On the Project menu, select Add Web Reference. The Add Web Reference window opens.

In the URL field, type (or copy and paste) this URL:
http://www.swsoft.com/webservices/vza/4.0.0/VZA . wsdl

1 Press the Go button next to the URL field. Visual Studio will try to connect to the SWsoft
web site and retrieve the Agent web service information. After a few seconds (depends on
the connection speed), you should see a single entry in the Web services found at this URL
listbox: 1 Service Found: - VZA

2 Type VZA in the Web reference name field replacing the default value (in general, you can
choose any name that you like). This name will be used in your code as the C# namespace
to access the selected service.

Press the Add Reference button. This will generate proxy classes from the WSDL specifications
and will add them to the project. A new item VZA will appear in the Solution Explorer in the
Web References folder. You can now start using generated classes to access Agent services.

Using SOAP API 93

Step 3: Main Program File

At this point, you should see the Program.cs file opened in your Visual Studio IDE. This is
the main file where we will write our program code. The file should contain the following code:

using System;

using System.10;

using System.Collections.Generic;
using System.Text;

using VzSimpleClient.VZA;

namespace VzSimpleClient

{
class Program
{
static void Main(string[] args)
// Wait for the user to press a key, then exit.
Console.Read()
}
}
}

We've added the necessary using directives and we've also added the Console.Read()
line to the Main() function to keep the console window open until a keyboard key is pressed.

Certificates Policy Preparation

Since Agent SOAP uses HTTPS as a transport protocol, we have to deal with the certificate
issues. For the purpose of this example, we're going to use the "trust all certificates" policy.
We'll create a class that implements such a policy for us and passes it to the certificate policy
manager during logon.

///<summary>

/// Sample class TrustAllCertificatePolicy.

/// Used as a certificate policy provider.

/// Allows all certificates.

///</summary>

public class TrustAllCertificatePolicy : System.Net.ICertificatePolicy

public TrustAllCertificatePolicy()
{1}

public bool CheckValidationResult(System.Net.ServicePoint sp,
System.Security.Cryptography.X509Certificates.X509Certificate

cert,
System.Net._WebRequest req, int problem)
{
return true;
}

Using SOAP API 94

Connection URL

An Agent server listens for secure HTTPS requests on port 4646. The connection URL will look
similar to the following example (substitute the IP address value with the address of your
server):

https://192.168.0.218:4646

You may also communicate with Agent using HTTP. In this case, the port number is 8080 and
the URL should look like this:

http://192.168.0.218:8080

The URL will be used as an input parameter during the login procedure described in the
following step.

Using SOAP API 95

SOAP Object Binding

In order to send SOAP messages, we will need a helper class that will initialize type binding. In
particular, this class will provide methods allowing to set up an Agent message header
containing the URL, the session ID, and the target operator name.

public

{
//
//
//
//
//
//
//
//
//
//
//
//
//

class Binder

Method to bind types.

Parameters

bindingType: Object name.

target: If set to true, will add the '"target"
argument to the message header.

IT set to false, will omit the "target”
argument.

"Target™ is the name of the Agent
operator that processes a particular
request type on the server side.

For some requests, this argument

must be omitted.

public System.Object InitBinding(System.Type bindingType, bool

target)

{

string typeName = bindingType.Name;
System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes) . Invoke(null);

bindingType.GetProperty("'Url') .SetValue(Binding, URL, null);
packet headerType header = new packet headerType();
header.session = session;

if (target)

header.target = new string[1];
header.target[0] = typeName.Replace('Binding™, "');

}
bindingType.GetField("'packet header'™).SetValue(Binding,

header) ;

}

//
//

return Binding;

Same as above, but will add the "target" argument to the
message header by default.

public System.Object InitBinding(System.Type bindingType)

{

string typeName = bindingType.Name;
System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes) . Invoke(null);

bindingType.GetProperty("Url™) .SetValue(Binding, URL, null);
packet headerType header = new packet headerType();
header.session = session;

header.target = new string[1];

header.target[0] = typeName.Replace('Binding"™, '"");
bindingType.GetField(*'packet_header™).SetValue(Binding,

header);

}

return Binding;

Using SOAP API

96

public Binder(string url,string sess)

{
URL = url;
session = sess;
string URL;
string session;

Logging in and Creating a Session

The following is an example of a function that logs the user in using the supplied connection

and login parameters.

Sample function parameters:

Name Description

url Agent server URL. See the Connection URL section.

name User name. We will be login in as a system administrator of the host server
(Hardware Node). You will need to know the password of your Hardware
Node administrator account.

domain We are not going to use this parameter in this example. For more information
on its usage, see Parallels Agent XML Programmer's Reference Guide.

realm Realm ID. Realm is a database containing user authentication information.

Agent supports various types of authentication databases, including operating
system user registries and LDAP-compliant directories, such as AD/ADAM on
Windows and OpenLDAP on Linux. In our example, we will be using the user
registry of the Hardware Node, which is called System Realm in Agent
terminology. The globally unique 1D that Agent uses for the System Realm is
00000000-0000-0000-0000-000000000000.

Using SOAP API 97

The function authenticates the specified user and, if the supplied credentials are valid, creates a
session for the user and returns the session ID. All subsequent Agent requests must include the
session ID in order to be recognized by Agent.

Sample function:

/77
//7/
//7/
/77
/77
/77
//7/
//7/
/77
/77
//7/
///

<summary>

Sample function Login.

Authenticates the user using the specified credentials and
creates a new session.

</summary>

<param name="'url'">Agent server URL.</param>
<param name="‘name">User name.</param>
<param name="‘domain''>Domain.</param>

<param name="‘realm'>Realm ID.</param>
<param name="'‘password''>Password</param>
<returns>New session ID.</returns>

public string Login(string url, string name, string domain, string
realm, string password)

{

try {
System_Net.ServicePointManager .CertificatePolicy = new

TrustAllCertificatePolicy();

// Login information object.
loginl loginlnfo = new loginl();

/* The sessionmBinding class provides the login and
* session management functionality.

>/

sessionmBinding sessionm = new VZA.sessionmBinding();

/* Instantiate the System.Text.Encoding class that will
* be used to convert strings to byte arrays.

>/

System.Text.Encoding ascii = System.Text.Encoding.ASCII;

// Populate the connection and the login parameters.
sessionm.Url = url;
logininfo.name = ascii.GetBytes(name);
if (domain.Length = 0) {
loginInfo.domain = ascili.GetBytes(domain);
s

if (realm.Length 1= 0) {
logininfo.realm = realm;
}

loginInfo.password = ascili.GetBytes(password);

// Log the specified user in.
return sessionm.login(loginlnfo).session_id;

}
catch (Exception e) {

return "Exception: " + e._Message;
}

Using SOAP API 98

Retrieving a List of Virtuozzo Containers

The following function retrieves a list of Virtuozzo Containers from the Hardware Node. The
function accepts a numeric code specifying the Container state as a parameter allowing you to
retrieve the information only for the Containers in a particular state (running, stopped, etc.). The
state codes are as follows:

(@)
o
o
@

Name

Unknown

Unexisting

Config

Down

Mounted

Suspended

Running

Repairing

0| N[foja|br~|[wW| N[O

License Violation

Using SOAP API 99

The function returns a string containing the list of names of the existing Virtuozzo Containers.

/// <summary>

/// sample function GetVEList.

/// Retrieves the list of Virtuozzo Containers from the Hardware Node.
/// </summary>

/// <param name="'state''>Container state code.</param>

/// <returns>Container names.</returns>

///

public string GetVEList(int state)

string list result = "";

try {
// Instantiate the proxy class.

vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
get _listl velist = new get _listli();

/* Set the Container status parameter.
* -1 means ignore the status.
*/
env_statusType[] env_status = new env_statusType[1l];
env_status[0] = new env_statusType();
if (state == -1) {
env_status[0] .stateSpecified = false;

else {
env_status[0] .state = state;
}

velist.status = env_status;

/* Get the list of the Containers then loop through it getting
the
* Server ID and the name for each Container
*/
foreach (string ve eid in env.get list(velist)) {
get_info2 ve_info = new get_info2();
ve_info.eid = new string[1];
ve_info.eid[0] = ve_eid;

/* Get the Container name from the Container configuration
structure.

* Please note that if the name was not assigned to a

* Container when it was created, the "name™ field will be
empty.

*/

list result +=
env.get_info(ve_info)[0].-virtual_config.name + '\n";

catch (Exception e) {
list result += "Exception: " + e.Message;
}

return list result;

Using SOAP API 100

Step 4: Running the Sample

You can build and run the program now. From the main menu, select Build and then Build
Solution. Then select Debug -> Start (or Start without Debugging) to run the sample.

Using SOAP API 101

Complete Program Code

using System;

using System.10;

using System.Collections.Generic;
using System.Text;

using VzSimpleClient.VZA;

namespace VzSimpleClient

{

class Program

{
Binder binder; // Binder object variable.
string session_id = """; // Agent session ID.
// Main.
static void Main(string[] args)
{

Program vzClient = new Program();

try {
vzClient.Run();

catch (System._Web.Services.Protocols.SoapException ex) {
Console._WriteLine(ex.Code.ToString() + ", " +
ex.Message) ;

}
catch (System.Xml_XmlException xmlex) {

Console _WriteLine(xmlex.ToString());

Console.WriteLine("Details:" + ex.Detail.lnnerText);

catch (System.InvalidOperationException opex) {
Console.WriteLine(opex.Message + ""\n" +
opex. InnerException);

}
Console._WriteLine("'Press Enter to conintinue...");
Console.Read();

}

///<summary>

/// Sample class TrustAllCertificatePolicy.

/// Used as a certificate policy provider.

/// Allows all certificates.

///</summary>

public class TrustAllCertificatePolicy :
System.Net. ICertificatePolicy

{

public TrustAllCertificatePolicy()

{13}

public bool CheckValidationResult(System.Net.ServicePoint
sp,

System.Security.Cryptography.X509Certificates.X509Certificate cert,
System.Net.WebRequest req, int problem)
{

}

return true;

Using SOAP APl 102

/// <summary>
/// Sample class Binder.
/// Provides methods to create the specified binding object
/// and to populate the Agent message header.
/// </summary>
public class Binder
{
string URL; // Agent server URL.
string session; // Agent session ID.

// Constructor. Sets URL and session ID values.
public Binder(string url, string sess)
{

URL

= url;
session =

u
n SEess;

}

/// <summary>

/// Method InitBinding (overloaded).

/// Creates a binding object.

/// <param name="bindingType'>

/// The name of the proxy class from which to
/// create the object.

/// </param>

/// <returns>

/// <para>New binding object.</para>

/// </returns>

/// </summary>

public System.Object InitBinding(System.Type bindingType)

{
System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes) . Invoke(null);

null);

the
of the n
the name

“filerBi

have the

operator

// Set URL.
bindingType.GetProperty(""Url™) .SetValue(Binding, URL,

// Create the request message header object.
packet headerType header = new packet headerType();

// Set session ID.
header.session = session;

/* Set the "target"™ parameter in the Agent request
* message header. The parameter must contain the name
* of the corresponding Agent operator.
* The operator name can be obtained from the name of

* proxy class. It is the substring from the beginning
ame
* followed by the "Binding" substring. For example,

* of the corresponding operator for the
nding" class is
* "Filer™.
* All Agent requests except 'system' requests must

* target operator value set. System is the only
that requires

Using SOAP API 103

header.

* the omission of the '“target™ parameter from the

*/

if (bindingType != typeof(systemBinding)) {
header.target = new string[1];
header.target[0] =

bindingType.Name.Replace(*'Binding", "**);
}

// Set the request message header.

bindingType.GetField("'packet header'™).SetValue(Binding, header);

}

//7/
//7/
/77
/77
/77
//7/
//7/
/77
/77
/77
//7/
route
/77
/77
/77
//7/
//7/
/77

return Binding;

<summary>
Method InitBinding (overloaded) .

Creates a binding object.

Allows to set destination Container.

</summary>

<param name="‘bindingType">

The name of the proxy class from which

to create the object.

</param>

<param name="‘eid">

The Server ID of the destination Container to which to

the request message for processing.
</param>

<returns>

<para>New binding object.</para>
</returns>

</returns>

public System.Object InitBinding(System.Type bindingType,

string eid)
{

System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes) . Invoke(null);

null);

// Set URL.
bindingType.GetProperty("'Url') .SetValue(Binding, URL,

// Create the request message header object.
packet headerType header = new packet headerType();

// Set session ID.
header.session = session;

/* Set the "target'” parameter in the Agent request
* message header.
*/
if (bindingType != typeof(systemBinding)) {
header.target = new string[1];
header.target[0] =

bindingType.Name.Replace(*'Binding", "**);
}

// Set the destination server ID.

Using SOAP API 104

header.dst.host = eid;

// Set the request message header.

bindingType.GetField("'packet header'™).SetValue(Binding, header);

}

}

return Binding;

/// <summary>

/// Sample function Login.

/// Authenticates the user using the specified credentials and
/// creates a new session.

/// </summary>

/// <param name=""url''>Agent server URL.</param>
/// <param name="name">User name.</param>

/// <param name="domain’>Domain.</param>

/// <param name="‘realm'>Realm ID.</param>

/// <param name="'‘password'>Password</param>

/// <returns>New session ID.</returns>

//7/

public string Login(string url, string name, string domain,
string realm, string password)

{

try {

System_Net.ServicePointManager .CertificatePolicy = new

TrustAllCertificatePolicy();

// Login information object.
loginl loginlnfo = new loginl();

/* The sessionmBinding class provides the login and
* session management functionality.

*/

sessionmBinding sessionm = new VZA.sessionmBinding();

/* Instantiate the System.Text.Encoding class that
* be used to convert strings to byte arrays.

*/
System.Text.Encoding ascii =

System.Text.Encoding.ASCII;

}

// Populate the connection and the login parameters.
sessionm.Url = url;
loginInfo.name = ascii.GetBytes(name);
if (domain.Length = 0) {
logininfo.domain = ascili.GetBytes(domain);
}

if (realm.Length 1= 0) {
logininfo.realm = realm;

logininfo.password = ascii.GetBytes(password);

// Log the specified user in.
return sessionm.login(loginlnfo).session_id;

catch (Exception e) {

}

return "Exception: + e.Message;

Using SOAP API 105

}

/// <summary>

/// sample function GetVEList.

/// Retrieves the list of Virtuozzo Containers from the
Hardware Node.

/// </summary>

/// <param name="'state''>Container state code.</param>

/// <returns>Container names.</returns>

///

public string GetVEList(int state)

{

string list result = "";

try {
// Instantiate the proxy class.

vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
get _listl velist = new get _listli();

/* Set the Container status parameter.

* -1 means ignore the status.

*/

env_statusType[] env_status = new env_statusType[1l];
env_status[0] = new env_statusType();

if (state == -1) {

env_status[0] -stateSpecified = false;
}

else {
env_status[0] .state = state;

velist.status = env_status;

/* Get the list of the Containers, then loop through
it getting the
* Server ID and the name for each Container
*/
foreach (string ve eid in env.get list(velist)) {
get_info2 ve_info = new get_info2();
ve_info.eid = new string[1];
ve_info.eid[0] = ve_eid;

/* Get the Container name from the Container
configuration structure.
* Please note that if name was not assigned to a
* Container when it was created, the "name™ field
will be empty.
*/
list result +=
env.get_info(ve_info)[0].-virtual_config.name + '\n";

catch (Exception e) {
list result += "Exception:
}

return list result;

+ e._Message;

Using SOAP API 106

/// <summary>
/// The Run() function is called from Main().
/// 1t contains the code that executes other sample functions.
/// </summary>
///
public void Run(Q)
{
/* The Agent server URL. Use the IP of
* your own Hardware Node here.
*/
string url = "http://10.30.67.54:8080/"";

// User name.
string user = "root";

// Domain name.
string domain = ""';

/* Realm 1ID.
* We are using the "system" realm here, so the
* user will be authenticated against the
* host operating system user registry.

*/
string realm = "00000000-0000-0000-0000-000000000000";
string password = "1g2w3e";

// Log the user in.

session_id = this.Login(url, user, domain, realm,
password) ;

Console.WriteLine("Session ID: " + session_id);

Console._WriteLine();

// Create the Binder object.
if (binder == null) {

binder = new Binder(url, session_id);
}

// Get the list of Containers from the Hardware Node.
Console._WriteLine(GetVEList(-1));
Console._WriteLine();

Developing Agent SOAP Clients

This section provides useful information that will help you make your development efforts as
trouble-free as possible. Some of the material presented here will also help you to overcome
certain problems that may arise due to differences in SOAP client implementations for different
platforms.

Using SOAP API 107

SOAP API Reference

SOAP API shares XML Schema with the XML API. The WSDL documents from which you
generate your client code are based on the XML Schema and contain the same interfaces and
calls. The .NET SOAP client generates the key classes by adding the Binding postfix to the
original interface name. For example, the envm interface becomes the envmBinding class in
C#, the vzaenvm interface becomes vzaenvmBinding, and so forth. Each class will have
methods for performing specific tasks. These methods are the C# equivalents of the XML API
calls from the corresponding XML API interfaces. For example, if you compare the
envmBinding class methods with the envm XML API interface calls, you will see that the
two sets match. What this means is that the information provided in the Parallels Agent XML
Reference guide, describing interfaces and calls, equally applies to generated C# classes and
methods. You can use this information as a reference when developing your SOAP applications.

Using SOAP API 108

Optional Elements

Many parameters that you supply to Agent API calls or receive from Agent are defined in the
XML schema as optional elements. This means that when composing a request message, you
include an element or omit it depending on the operation that you are trying to perform. In
response messages, an optional element may be similarly included or not. Unfortunately, unlike
the XML Schema optional elements, the class members in traditional programming languages
cannot be "optional" and therefore are handled differently in this respect. The proxy classes
generated from WSDL will have optional elements as primitive types (int, bool, etc.),
complex types (strings, classes, structures), and arrays. The following describes how to handle
each element type in your code.

Primitive Types

A primitive type member is usually flagged by a corresponding member of type bool declared
just below it. The name of the boolean variable is made of the name of the principal member
with an added Specified suffix.

As an illustration, let's take a look at the userType class.

public class userType {

/// <remarks/>
public userTypelnitial _group initial_group;

/// <remarks/>
[System._Xml_.Serialization.XmlElementAttribute(''group'™)]
public userTypeGroup[] group;

/// <remarks/>
public int uid;

/// <remarks/>
[System_Xml_Serialization.XmllgnoreAttribute()]
public bool uidSpecified;

/// <remarks/>
public string shell;

/// <remarks/>
[System.Xml_Serialization.XmlElementAttribute(DataType="base64Binary'")
1

public System.Byte[] password;

/// <remarks/>
public string home_dir;

/// <remarks/>
public string name;

/// <remarks/>
public string comment;

/7 ...

Using SOAP API 109

Note that the uid and uidSpecified class members form a pair. The value of the
uidSpecified member indicates whether the uid is present or not in the data, meaning if it
contains a meaningful value or not.

Before you try to read the value of the uid member, you have to check whether its value was
set when the response was generated on the server side. You do that by looking at the
corresponding boolean flag first, i.e. the value of the uidSpecified member. If the value is
true then uid was set and it contains a meaningful value. If the value is false then uid was
not set and therefore must be ignored.

When you assign a value to an "optional" member, you will have to set the corresponding
boolean flag to true in order for the element to be included in the packet. Here's an example:

uid = 100;
uidSpecified = true;

If you don't set the xxxSpecified flag to true then the receiving code will evaluate the
corresponding optional element as "not included in the request™ and will ignore its value.

Complex Types

The XML schema complex types are represented in C# by strings, classes, and structures. An
example of such an element is the initial_group member from the code example above.
To determine whether the element is present or not in the packet, check if the value of the object
isnull:

if (initial_group == null)

// The element is absent ...

}
Arrays

Finally, arrays (e.g. the group member in the example above) are considered optional if they
have a null I value or are empty.

Elements with no Content

Some of the elements in the Agent protocol are used as flags. These are simple elements that
have no type and never contain any data. In XML, you either include the element in a packet
like this <some_element/>, or you simply omit it.

In C#, when passing an object of this kind to a method, you have to create it as an empty object
like this:

some_element myObject = new Object();

Using SOAP API 110

Base64-encoded Values

Because XML is text-based, not all ASCII characters are allowed to be passed as plain text.
That's why some elements of the Agent protocol are base64-encoded. In C#, elements of this
kind are represented as byte arrays. You don't have to additionally encode the data meant for
these arrays, just fill them with the necessary content. Here is an example:

VZA.login loginCred = new VZA.login();
System.Text.Encoding ascii = System.Text_Encoding.ASCII;
loginCred.user = user;

loginCred.password = ascii.GetBytes(password);

Timeouts

Microsoft .NET SP1 has the default timeout value for the XML Web service calls set to 100000
ms. If you use this default value, some of your calls will never have a chance to complete.
We've experienced the following error message related to this problem:

An unhandled exception of type "System.Net.WebException® occurred in
system.Web.services.dll Additional information: The operation has
timed-out.

You may receive a different message but the cause may still be the same -- the default timeout
value is too low. To avoid this problem, set the appropriate timeout value or set the timeout
value to infinite, as shown in the following example:

MyService servicel = new MyService();

// Infinite timeout.
servicel.Timeout = -1;

// The timeout is set to 10 minutes.
servicel.Timeout = 10 * 60 * 1000;

Using SOAP API 111

Get/Set Method Name Conflict

Problem:

Microsoft Visual C# .NET may produce errors when generating client code from WSDL similar
to the following example:

<xs:element name="set Xxxx''>
<xs:complexType>
<xs:seguence>
<xs:element name=""xxx" type=""XXXtype" />
</Xs:sequence>
</xs:complexType>
</xs:element>

Note that the function set_xxx has a parameter xxx. Microsoft Visual C# .NET will generate
the following code:

public partial class set xxx {
private string xxxField;
/// <remarks/>
public string xxx {

get {

return this.xxxField;
b
set {

this.xxxField = value;
¥

}
}

As you can see, the function has the same name as the class name. This causes the C# compiler
to produce the following error:

error CS0542: "set xxx": member names cannot be the
same as their enclosing type

Solution:

Create a batch file wsdlc.bat containing the following code and save it in your project
directory:

setlocal
set WS=%1Web References\VZA
copy "%WS%\Reference.map" "%WS%\Reference.discomap"

REM The following block of code should be placed on
REM the same line. Every segment that starts

REM on the next line here, must be placed after

REM the previous one separated by a single space.

"'00VS80COMNTOOLS%\ - -\ .\SDK\v2.0\Bin\wsdl .exe"
/1:CS /fields
/out:""%WS%\Reference.cs"
/n:%2_VZA "%WS%\Reference.discomap"

REM End of "The following block of code ..."

del "%WS%\Reference.discomap"
endlocal

Using SOAP API 112

exit /b O

The file generates the new Reference.cs file (the file containing the proxy classes) fixing
the problem described above by generating the regular properties instead of C#-style get/set
fields. Do not try to run the file. It will be run automatically after we complete the rest of the
steps.

In the Microsoft Visual C# .NET development environment, select Project > Properties menu
item. Select Build Events option in the left pane. Now in the right pane, modify the parameter
Pre-build Event Command Line to contain the following line:

$(ProjectDir)wsdlc.bat $(ProjectDir) $(ProjectName)

Note: Make sure that the Reference.cs file is not currently opened in the IDE, otherwise
the compiler will use it instead of the new file that will be generated by our batch file.

Select the Build > Build Solution menu option to build your solution. This will take longer than
usual because the wsd I c . bat file that we created will re-generate the proxy classes.

After the build is completed, the Reference.cs file will contain newly generated stubs. At
this point you can remove or comment out the entry that we used in the Project > Properties >
Pre-build Event Command Line option. If that's not done, the stubs will be re-generated every
time you build your solution.

If you decide to update the client code from WSDLs, repeat the described steps.

The request describing this defect was submitted to Microsoft: #FDBK46565

Managing Virtuozzo Containers

The material in this section provides code examples that demonstrate how to perform the most
common Virtuozzo Containers management tasks.

Using SOAP API 113

Creating a Container

When creating a new Virtuozzo Container, the following configuration parameters are
mandatory and must be selected every time:

Sample configuration name. Virtuozzo Containers software comes with a set of sample
configurations that are installed on the Hardware Node at the time the software is installed.
XML API provides the env_samplem/get_sample_conT call to retrieve the list of
the available configurations. In the example provided in this section, the C# equivalent of
that call is the env_samplemBinding.get_sample_conf() method.

Virtuozzo OS Template. The list of the available templates can be retrieved using the
vzapkgm.get_list XML API call. The C# equivalent is
vzapkgmBinding.get_ list call. For simplicity, we are not including this call in the
example because Virtuozzo for Windows currently comes with just one OS template, and
Virtuozzo for Linux has one template for each supported Linux distribution. For example,
the standard Red Hat Linux OS template name is redhat-as3-minimal.

The rest of the parameters that we use in this example are optional but are typically used when a
new Container is created. The following sample shows how to create a Virtuozzo Container

Sample Function Parameters:

Name Description

name The name that you would like to use for the Container.
os_template The name of the OS template from which to create a Container.
platform Operating system type: Iinux or windows. This parameter

will be used in our function to select a sample configuration for
the Container. If the sample configuration is compatible with
the specified platform, we will use it. In a real application, you
would probably select the sample configuration in advance and
would pass its name to the method that actually creates a
Container. In this example, we automate this task while
providing a demonstration of how to retrieve the list of the
available sample configurations.

architecture CPU architecture, e.g. x86, 1a64. This parameter, together

with the platform parameter (above) will also be used to
determine the sample configuration compatibility with the
specified CPU architecture.

hostname The hostname that you would like to use for the Container.

The IP address to assign to the Container.

netmask Container network netmask.

network Network interface ID: venetO for Linux; venetl for

Windows. These are the standard host-routed Virtuozzo
network interfaces. For other network configuration scenarios,
please refer to the Parallels Agent XML Programmer's Reference
guide.

offline_management Specifies whether to turn the Offline Management feature on or

off.

Using SOAP AP

114

Sample Function:

/// <summary>

/// Sample function CreateVE.

/// Creates a new Virtuozzo Container.

/// </summary>

/// <param name="name''>Container name.</param>

/// <param name="'‘os_template'>0S template name.</param>

/// <param name="platform>Operating system type: linux or
windows.</param>

/// <param name="architecture">CPU architecture (x86, ia64)</param>
/// <param name="hostname''>Container hostname.</param>

/// <param name="ip">Container IP address.</param>

/// <param name="netmask'>Netmask.</param>

/// <param name="network>Network interface ID.</param>

/// <param name="offline_management'>

/// A flag specifyin whether to turn the "offline management"
/// feature on or off.

/// </param>

/// <returns>Server ID of the new Container.</returns>

public string CreateVE(string name, string os_ template, string
platform, string architecture, string hostname, string ip, string
netmask, string network, bool offline_management)

{

try {
// Instantiate the proxy class.

vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
create create_input = new create();

// Container configuration information.
venv_configTypel veconfig = new venv_configTypel();

/* Retrieve the list of sample configurations.
* Select the first one that is compatible with the
* specified platform (Linux, Windows) and CPU architecture.
*/
env_samplemBinding env_sample =
(env_samplemBinding)binder. InitBinding(typeof(env_samplemBinding));
get_sample_conf get sample = new get sample_conf();
sample_confType[] samples =
env_sample.get _sample_conf(get_sample);

if (samples = null) {
foreach (sample_confType sample in samples) {
if (sample.env_config.os = null) {
if (sample.env_config.os.platform == platform &&
sample.env_config.architecture == architecture) {

//Set Container sample
veconfig.base sample _id = sample.id;
break;

}

// Set OS template.
templateType osTemplate = new templateType();

Using SOAP API 115

osTemplate.name = os_template;
veconfig.os_template = osTemplate;

// Set Container name
veconfig.name = name;

// Set Container hostname
veconfig.hostname = hostname;

// Set Container IP address and netmask.
ip_addressType[] ip_address = new ip_addressType[l];
ip_address[0] = new ip_addressType(Q);
ip_address[0].ip = ip;

ip_address[0].-netmask = netmask;

// Set network.

net_vethType[] net = new net vethType[l];
net[0] = new net vethType(Q;

net[0]-host routed = new object();
net[0].id = network;

net[0].ip_address = ip_address;
veconfig.net _device = net;

// Set the offline management feature.
veconfig.offline_managementSpecified = true;
veconfig.offline_management = offline_management;

// Finalize the new Container configuration.
create_input.config = veconfig;

// Create the Container.
return env.create(create_input).env.eid;

}
catch (Exception e) {

return "Exception:
}

+ e._Message;

}
The function invocation example:

createVE("sample_ve', "redhat-as3-minimal*, "linux",''x86",
"sample_ve_ hostname', "10.16.3.179", '255.255.255.0", '"'venet0", true

);

Using SOAP API 116

Starting, Stopping, Restarting a Container

To start a Container, use the vzaenvmBinding.start() method passing the Container ID.
See Creating a Simple Client Program for an example on how to obtain the list of the IDs from
the Hardware Node.

/// <summary>
/// Sample function StartCT.
/// Starts the specified Container.
/// </summary>
/// <param name="ve_eid'>Server 1D of the Container.</param>
/// <returns>"0OK"™ or error information.</returns>
public string StartCT(string ve_eid)
{
try {

// Instantiate the proxy class.
vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
start start _input = new start();

// Set the Server 1D of the Container.
start_input.eid = ve_eid;

// Start the VE.
env.start(start_input);

return "OKI";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

}

Stopping and Restarting a VE is similar to the example above. The following two functions
demonstrate how it's done.

/// <summary>

/// Sample function StopVE.

/// Stops a VE.

/// </summary>

/// <param name="ve_eid'>Server 1D of the container.</param>
/// <returns></returns>

public string StopVE(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
stopl stop_input = new stopl();

// Set ID.
stop_input.eid = ve eid;

// Stop the Container.
env.stop(stop_input);

return ""OKI!";

117

Using SOAP AP
¥ _
catch (Exception e) {
return "Exception: " + e._Message;
}

}

/// <summary>

/// Sample function RestartCT.

/// Restarts a Container.

/// </summary>

/// <param name="ve_eid">Server 1D of the Container.</param>
/// <returns></returns>

public string RestartCT(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
restartl restart _input = new restartl();

// Set ID.
restart_input.eid = ve_eid;

// Restart the Container.
env.restart(restart_input);

return "OKI!";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

Using SOAP API 118

Destroying a Container

To destroy a Container, use the vzaenvmBinding.destroy() method. The method
accepts Server ID of a Container as a single parameter.

/// <summary>

/// Sample function DestroyCT.

/// Destroys a VE.

/// </summary>

/// <param name="ve_eid'>Server 1D of the Container.</param>
/// <returns>"0OK"™ or error information.</returns>

public string DestroyCT(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
destroy destroy_ input = new destroy();

// Set ID.
destroy input.eid = ve eid;
env.destroy(destroy_ input);

return "The Container has been destroyed.';

}
catch (Exception e) {

return "Exception:
}

+ e._Message;

Using SOAP API 119

Suspending and Resuming a Container

The following two examples show how to suspend and then resume the operation of a Virtuozzo
Container.

/// <summary>

/// Sample function SuspendCT.

/// Suspends a VE.

/// </summary>

/// <param name="ve_eid'>Server 1D of the Container.</param>
/// <returns>"OK" or error information.</returns>

public string SuspendCT(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
suspendl suspend_input = new suspendl();

// Set Server 1ID.
suspend_input.eid = ve eid;

// Suspend Container.
env.suspend(suspend_input);

return "OKI!";

}
catch (Exception e) {

return "Exception: " + e_Message;
}

}

/// <summary>

/// Sample function ResumeVE.

/// Resumes a Container that was previuosly suspended.

/// </summary>

/// <param name="ve_eid'">Server 1D of the Container.</param>
/// <returns></returns>

public string ResumeVE(string ve_eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
resumel resume_input = new resumel();

// Set Server ID.
resume_input.eid = ve eid;

// Resume Container.
env.resume(resume_input);

return "OKI!";

}
catch (Exception e) {

return "Exception: " + e_Message;
}

Using SOAP API 120

Getting Container Configuration Information

A Container configuration information is stored on the Hardware Node. This configuration (also
called virtual configuration) is used by Virtuozzo to set the necessary Container parameters
when the Container is started. To retrieve a Container configuration, use the
vzaenvmBinding.get info method. For the complete list and description of the input
parameters, see the vzaenvm/get_info call in the Parallels Agent XML Programmer's
Reference guide.

The following sample shows how to retrieve the complete configuration information for the
specified Container.

/// <summary>
/// Sample function GetConfig.-
/// Retrives Container configuration information.
/// </summary>
/// <param name="ve_eid'">Server ID of the Container.</param>
/// <returns>
/// A string containing the Container configuration information.
/// </returns>
public string GetConfig(string ve eid)
{
string ve_info = "";
try {
// Instantiate the proxy class.
vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The input parameters.
get_info2 getlnfo_input = new get_info2();
string[] eids = new string[1];

// Set Server 1D of the Container for which to get the info.
eids[0] = ve_eid;
getinfo_input.eid = eids;

// Get the Container information from the Hardware Node.
envType[] envtype = env.get info(getinfo_input);

// Get the Container configuration from the returned object.
venv_configType veconfig = envtype[0]-virtual_config;

// Get Container name.
ve_info += "Name: " + envtype[O].-virtual config.name + *\n";

// Get Contailner description.
it (envtype[O]-virtual _config.description !'= null &&
envtype[0] -virtual _config.description.Length = 0)
ve_info += "Description: " +

System.Text.Encoding-ASCII .GetString(envtype[0].virtual_config.descrip
tion) + "\n" +
//Get network configuration.
"Network configuration: \n';
if (envtype[O].-virtual _config.address !'= null) {
ve_info += "IP: " + veconfig.address[0]-ip + "\n" +
"Netmask: " + veconfig.address[0].netmask + "\n";

Using SOAP API 121

// Get Container hostname.
ve_info += "HostName: " + veconfig.hostname + "\n" +
// Get architecture
"Architecture: " + veconfig.architecture + '"\n" +
// Get 0OS
"0S name: " + veconfig.os.name + \n" +
"0S platform: " + veconfig.os.platform + "\n" +
"0S kernel: "™ + veconfig.os.kernel + "\n" +
"0S version: " + veconfig.os.version + "\n" +
// Get status
"Status: " + envtype[O].status.state.ToString() + "\n" +
// Get QoS information.
"QoS cur: " + veconfig.qos[0]-cur.ToString() + '"\n" +
"QoS hard: " + veconfig.qos[0].hard.ToString() + "\n" +
"QoS id: " + veconfig.qos[0]-id + '\n" +
"QoS soft: " + veconfig.qos[0].soft.ToString();// +"\n";

}
catch (Exception e) {
ve_info += "Exception: " + e._Message;
}
return ve_info;
}
Configuring a Container

This section shows you how to modify a Container configuration. It is organized into
subsections each demonstrating how to modify a particular configuration parameter. The basic
idea behind modifying the Container configuration is simple. Agent SOAP API has classes that
hold the Container configuration parameters. You instantiate the necessary classes (depending
on the parameter type) and populate only those members (configuration parameters) that you
would like to modify. You then submit the populated objects to Agent using the appropriate

class and

method. Upon receiving the new configuration, Agent will updated only those

parameters that you specified in the input structure.

Modifying IP Address

Sample Function Parameters:

Name Description

ve_eid The Server ID of the Container for which you would like to modify the
configuration info.

new_ip The new IP address. A Virtuozzo Container may have multiple IP addresses
assigned to it. When modifying the IP address information, all of the existing
address information will be removed from the configuration and the new
addresses will be put in their place. In this example, we will be operating with
a single IP address for simplicity.

netmask New netmask.

network The name of the network interface for which you would like to modify the IP
address settings.

Using SOAP API 122

Sample Function:

/// <summary>

/// Sample function ModifylP.

/// Modifies the Container IP address.

/// </summary>

/// <param name="'ve_eid'">Server ID of the Container.</param>
/// <param name="new_ip">New IP address.</param>

/// <param name="netmask™>New netmask.</param>

/// <param name="network>Network interface name.</param>
/// <returns>"0OK"™ or error information.</returns>

public string ModifylP(string ve eid, string new_ip, string netmask,
string network)

{

try {
// Instantiate the proxy class.

vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
set2 set_input = new set2();

// Set Server 1D of the Container.
set_input.eid = ve _eid;

// The Container configuration structure.
venv_configTypel veconfig = new venv_configTypel();

// Set ip addresses.

ip_addressType[] ip_address = new ip_addressType[l];
ip_address[0] = new ip_addressType(Q);
ip_address[0].ip = new_ip;

ip_address[0] .netmask = netmask;

// The network interface information structure.
net_vethType[] net = new net vethType[l];
net[0] = new net vethType(Q;

// Set the network parameters.
net[0]-host _routed = new object();
net[0].id = network;
net[0].ip_address = ip_address;
veconfig.net _device = net;
set_input.config = veconfig;

// Modify the Container configuration.
env.set(set _input);

return "OKI!";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

Using SOAP API 123

Modifying Hostname

/// <summary>

/// Sample function ModifyHostname.

/// Modifies Container hostname.

/// </summary>

/// <param name="ve_eid'>Server 1D of the Container.</param>
/// <param name="new_hostname">New hostnhame.</param>

/// <returns>0K/Error.</returns>

public string ModifyHostname(string ve eid, string new_hostname)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
set2 set _input = new set2();

// Set Server 1ID.
set_input.eid = ve _eid;

venv_configTypel veconf = new venv_configTypel();

// Set new hostname
veconf._hostname = new_hostname;
set_input.config = veconf;

// Modify the Container configuration.
env.set(set_input);

return "OKI!";

}
catch (Exception e) {

return "Exception:
}

+ e._Message;

Using SOAP API 124

Modifying Container Name

//7/
/77
//7/
/77
///
//7/
/77
/77

<summary>
Sample function ModifyName.

Modifies Container name.

</summary>

<param name="'ve_eid">Server 1D of the Container.</param>
<param name="new_name'">New Container name.</param>
<returns>0K/Error.</returns>

public string ModifyName(string ve_eid, string new_name)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

set2 set _input = new set2();

// Set Server ID.
set_input.eid = ve _eid;
venv_configTypel veconf = new venv_configTypel();

// Set new Container name.
veconf.name = new_name;
set_input.config = veconf;

// Modify the Container configuration.
env.set(set_input);

return "OKI!";

}
catch (Exception e) {

return "Exception:
}

+ e._Message;

Using SOAP AP

125

Modifying QoS Settings
/// <summary>
/// Sample function ModifyQoS.
/// Modifies Container QoS settings.
/// </summary>
/// <param name="ve_eid'>Server 1D of the Container.</param>
/// <param name="qos_id">QoS ID.</param>
/// <param name="hard">New hard limit value.</param>
/// <param name="'soft'>New soft limit value.</param>
/// <returns></returns>
public string ModifyQoS(string ve eid, string qos_id, int hard,
soft)
{
try {

vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

}

set2 set_input = new set2();

// Set Server 1D.
set_input.eid = ve _eid;

venv_configTypel veconfig = new venv_configTypel();
// Set Container QoS.

veconfig.-qos = new gosType[1l];

veconfig.-qos[0] = new gosType(Q);

// Set QoS ID.
veconfig.qos[0]-id = qos_id;

// Set hard limit

veconfig.qos[0] -hardSpecified = true;
veconfig.qos[0]-hard = hard;

// Set soft limit

veconfig.qos[0] -softSpecified = true;

veconfig.qos[0]-soft = soft;

// Modify the Container configuration.
set_input.config = veconfig;
env.set(set_input);

return "OKI!";

catch (Exception e) {

}

return "Exception: " + e_Message;

int

Using SOAP AP

126

Modifying DNS Server Assignment

//7/
/77
//7/
/77
///
//7/
/77

<summary>
Sample function ModifyDNS.

Modifies Container DNS server assignment.

</summary>

<param name="'ve_eid">Server 1D of the Container.</param>
<param name='‘new_nameserver''>New nameserver name.</param>
<returns>0K/Error.</returns>

public string ModifyDNS(string ve eid, string new_nameserver)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

set2 set _input = new set2();

// Set Server 1ID.
set_input.eid = ve _eid;

// Container configuration.
venv_configTypel veconfig = new venv_configTypel();

// Network device.
veconfig.net _device = new net vethType[1l];
veconfig.net _device[0] = new net vethType();

// Set Container DNS.
veconfig.net _device[0].-nameserver = new string[1];
veconfig.net_device[0].nameserver[0] = new_nameserver;

// Modify Container configuration.
set_input.config = veconfig;
env.set(set_input);

return "OKI";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

Using SOAP API 127

Cloning a Virtuozzo Container

Cloning refers to a process of creating an exact copy (or multiple copies) of a Virtuozzo
Container on the same Hardware Node. The new Container will have its own private area and
root directories but the rest of the configuration parameters will be exactly the same. This means
that even the parameters that should be unique for each individual Container (IP addresses,
hostname, name) will be copied unchanged. You don't have an option to specify new values
during the cloning operation. Instead, you will have to clone the Container first and then update
the configuration of the new Container(s) in a separate procedure. There are a few exceptions to
this rule. You can optionally specify custom private area and root directories for the new
Container, but only if you are creating a single copy of the source Container. You also have an
option to specify custom Container ID for each clone. If you don't want to set these options
manually, their values will be selected automatically.

You can clone both running and stopped Containers. There are a few differences when cloning
Containers on Windows and Linux platforms:

@ on Linux, running source Container will be suspended momentarily during the cloning
operation. This is done in order to eliminate possible changes to the Container state and status.
Once all the data is read from the source Container, the Container is resumed and the cloning
operation proceeds normally.

" On Windows, a snapshot of the source Container is taken on the fly, so the Container
operation is never interrupted during cloning.

The following sample illustrates how to clone an existing Container. The name of the C# class
that provides the cloning functionality is relocatorBinding (stepping ahead, this class also
provides the Container migration functionality that we'll discuss in the following section). The
XML API equivalent of the class is the relocator interface.

Sample Function Parameters:

Name Description

eid The Server ID of the Container to clone.

count The number of clones to create.

Using SOAP API 128

Sample Function:

/// <summary>

/// Sample function CloneCT.

/// Create an exact copy of the specified Container.

/// </summary>

/// <param name="eid''>The Server ID of the source Container.</param>
/// <param name="‘count''>Number of copies to create.</param>

/// <returns>Server IDs of the new Virtuozzo Containers.</returns>
///

public string[] CloneCT(string eid, int count)

{

cloneResponse response;

try {
// Instantiate the proxy class

relocatorBinding relocator =
(relocatorBinding)binder. InitBinding(typeof(relocatorBinding));

// The main input parameter.
clone clone_input = new clone();

// Set Server 1D of the source Countainer.
clone_input.eid = eid;

// Number of copies to create.
clone_input.count = 1;

// Clone the Container(s).
response = relocator.clone(clone_input);

catch (Exception e) {
response = new cloneResponse();
response.eid_list[0] = "Exception:
return response.eid_list;

+ e._Message;

}

return response.eid_list;

Using SOAP API 129

Migrating a Container to a Different Host

You can migrate an existing Container from one Hardware Node to another. The resulting
Container is created as an exact copy of the source Container. To migrate a Container, the target
Hardware Node must have Virtuozzo Containers software and Agent installed on it.

The following V2V (virtual-to-virtual) migration types are supported:

Offline migration. Performed on a stopped or running source Container. If the Container is
stopped, all its files are simply copied from the source host to the target host. If the
Container is running, the files are first copied to the target machine and then the Container is
stopped momentarily. At this point, the data that was copied to the target machine is
compared to the original data and the files that have changed since the copying began are
updated. The source Container is then started back up. The downtime depends on the size of
the Container but should normally take only a minute or so. Offline migration is the default
migration type.

Simple online migration. Performed on a running source Container. In the beginning of the
migration process, the Container becomes momentarily locked and all of its data, including
the states of all running processes, is dumped into an image file. After that, the Container
operation is resumed, and the dump file is transferred to the target computer where
Virtuozzo Containers automatically creates a new Container from it.

Lazy online migration. Instead of migrating all of the data in one big step (as in simple
online migration above), lazy migration copies the data over a time period. Initially, only the
data that is absolutely necessary to bring the new Container up is copied to the target host.
The rest of the data remains locked on the source host and is copied to the destination host
on as-needed basis. By using this approach, you can decrease the services downtime to near
zero.

Iterative online. During the iterative online migration, the Container memory is transferred
to the destination node before the Container data is dumped into an image file. Using this
type of online migration allows to attain the smallest service delay.

Iterative + lazy online migration. This type of online migration combines the techniques
used in both the lazy and iterative migration types, i.e. some part of Container memory is
transferred to the destination host before dumping a Container, and the rest of the data is
transferred on-demand after the Container has been successfully created on the target host.

On successful migration, the original Container will no longer exist on the source node. This is
done in order to avoid possible conflicts that may occur if both Containers -- the original and the
copy -- are running at the same time. Although the original Container will no longer show up in
the Container list on the source node, the Container data will not be deleted. By default, the data
is kept in its original location (the Container private area) but the private area directory itself
will be renamed. If you wish, you can completely remove the original Container data from the
source node by including the options/remove parameter in the request.

The name of the C# class that provides the migration functionality is relocatorBinding.
The XML API equivalent is the relocator interface.

The following sample shows how to perform a V2V migration.

Sample Function Parameters:

Name Description

Using SOAP API

130

eid

The Server ID of the source Container.

mn_type

Migration type:

0 -- Offline

1 -- Simple online
2 -- Lazy online

3 -- Iterative online

4 -- Iterative lazy online

ip_address

This and the rest of the parameters are the connection and login
information that will be used to log in to the target Hardware Node.

The target Hardware Node IP address.

port Port number.
protocol Communication protocol to use:
SSL -- SSL over TCP/IP.
TCP -- plain TCP/IP.
NamedPipe -- named pipe.
username User name. The user must have sufficient rights to connect to the
target Hardware Node.
realm Realm ID. The ID of the authentication database against which to
authenticate the specified user. In this example, we will be using the
system Realm -- the host operating system user registry.
password User password.

Using SOAP API 131

Sample Function:

/// <summary>

/// Sample function Migrate.

/// Migrates a Container to a different Hardware Node.

/// </summary>

/// <param name="eid''>The Server ID of the source Container.</param>
/// <param name="‘mn_type"'>Migration type.</param>

/// <param name="ip_address'>Target HN IP address.</param>

/// <param name="port'’>Target HN port number.</param>

/// <param name="protocol''>Communication protocol.</param>

/// <param name="‘username''>

/// User name with which to login to the

/// target HN.

/// </param>

/// <param name="‘realm">

/// Realm ID on the target HN against which to authenticate the user.
/// </param>

/// <param name="password">User password.</param>

/// <returns>"0K"™ or error information.</returns>

///

public string Migrate(string eid, int migration_type, string
ip_address, uint port, string protocol, string username, string realm,
string password)

try {
relocatorBinding relocator =

(relocatorBinding)binder. InitBinding(typeof(relocatorBinding));
migrate_v2v v2v_input = new migrate v2v();

// Set Server 1D of the source Container.
v2v_input.eid list = new string[1];
v2v_input.eid _list[0] = eid;

/* Set migration type.

* The "options™ member allows you to set other

* migration options. See Agent XML Reference

* for more info.

*/
Vv2v_input.options = new v2v_migrate_optionsType();
Vv2v_input.options.type = migration_type;

// Set the target Nardware Node connection info.

v2v_input.dst = new connection_infoType();

connection_infoType connection_parm =
(connection_infoType)v2v_input.dst;

// Set the target Node IP address.
Vv2v_input.dst.address = ip_address;

// Set the port number.
v2v_input.dst.portSpecified = true;
Vv2v_input.dst.port = port;

// Set protocol.
v2v_input.dst.protocol = protocol;

// Set login parameters.
v2v_input.dst.login = new auth_nameType();

Using SOAP API 132

Vv2v_input.dst.login.name =
System.Text.ASCIIEncoding.ASCI I .GetBytes(username);
v2v_input.dst.login.realm = realm;

// Set user password.
Vv2v_input.dst.password =
System.Text.ASCIIEncoding.-ASCI 1 .GetBytes(password);

// Set infinite timeout for the request.
relocator.Timeout = -1;
relocator._migrate_v2v(v2v_input);

return "OK";

catch (Exception e) {
return "Exception: " + e_Message;

}
}

Backup Operations

Agent SOAP API provides a set of methods that allow to perform Virtuozzo Container backup
and restore operations. The following subsections describe some of the most common operation
scenarios and provide code samples.

Backing up a Container

The following sample illustrates how to use the backupmBinding.backup_env method to
create a backup of a Virtuozzo Container.

Sample Function Parameters:

Name Description

eid The Server ID of the source Container.
description Backup description.

type Backup type:

0 -- Full (default). A full backup is a starting point for all other
backup types.

1 -- Incremental. Only the files that have changed since the last full,
incremental, or differential backup are included. When restoring from
an incremental backup, you'll need the latest full backup as well as
every incremental and/or differential backup that you've made since
the last full backup.

2 -- Differential. Only the files that have changed since the last full
backup are included. When restoring from a differential backup, only
the latest differential backup itself and the latest full backup is
needed.

Using SOAP API

133

compression

Compression level:
0 -- no compression.
1 -- normal (default).
2 -- high.

3 -- maximum.

The following parameters are used to specify the backup server
connection and login information. The sample function provided here
illustrates how to specify the backup server connection and login
information manually.

Note: To use a remote computer as a backup server, you must
install Virtuozzo Containers software on it.

ip

Backup server IP address.

user

Login name.

password

Login password.

realm

Realm ID against which to authenticate the user. The Realm
definition must exist in the Agent configuration on the backup server.

On a fresh Agent installation, the only Realm available is System --
a predefined Realm that refers to the operating system user registry on
the Hardware Node. The System Realm ID is 00000000-0000-
0000-0000-000000000000.

protocol

Communication protocol:
SSL -- SSL over TCP/IP.
TCP -- plain TCP/IP.

NamedPipe -- named pipe.

port

Port number. Agent on the source server will be connecting to the
Agent on the backup server, the TCP port numbers therefore are the
standard Agent options:

4433 -- TCP/IP connection.
4434 -- SSL over TCP/IP connection.

Using SOAP API 134

Sample Function:

/// <summary>

/// Sample function BackupVE.

/// Performs a Container backup.

/// </summary>

/// <param name="eid'>Server ID of the source Container.</param>
/// <param name="‘description'>

/// User-defined backup description.

/// </param>

/// <param name="‘type''>Backup type.</param>

/// <param name="‘compression'>Compression level.</param>

/// <param name="ip">Target HN IP address.</param>

/// <param name="‘user''>

/// User name with which to login to

/// the target Nardware Node.

/// </param>

/// <param name="‘password'>User password.</param>

/// <param name="realm'>Realm ID.</param>

/// <param name="‘protocol'>Communication protocol.</param>

/// <param name="port''>Target HN port number</param>

/// <returns>Backup ID.</returns>

///

public string BackupVE(string eid, string description, int type, int
compression, string ip, string user, string password, string realm,
string domain, string protocol, uint port)

{

try {
// Instantiate the proxy class

backupmBinding backupm =
(backupmBinding)binder. InitBinding(typeof(backupmBinding));

// The main input object.
backup_env backup_input = new backup_env();

// Set Server 1D of the Container.
backup_input.env_list = new string[1];
backup_input.env_list[0] = eid;

// Set backup options.
backup_optionsType options = new backup_optionsType(Q);

// Backup description.
options.description =
System.Text.ASCII1Encoding.ASCI1_GetBytes(description);

// Backup type.
options.typeSpecified = true;
options.type = type;

// Compression level.
options.compressionSpecified = true;
options.compression = compression;

// Set the backup server login information.
auth_nameType login_info = new auth_nameType();

// User name.
login_info.name =
System.Text.ASCIIEncoding-ASCI I .GetBytes(user);

Using SOAP API 135

// Realm ID.
login_info.realm = realm;

// Domain name.
login_info.domain =
System.Text.ASCI1Encoding.ASCI I .GetBytes(domain);

// Set the backup server connection information.
connection_infoType connection = new connection_infoType();

// Backup server IP address.
connection.address = ip;

// Communication protocol.
connection.protocol = protocol;

// Port number.
connection.portSpecified = true;
connection.port = port;

// Password.
connection.password =
System.Text.ASCIIEncoding.-ASCI 1 .GetBytes(password);

// Finalize the input.

connection.login = login_info;
backup_input.backup_server = connection;
backup_input.backup_ options = options;

// Set infinite timeout for the request.
backupm.Timeout = -1;

// Start backup.
return backupm.backup_env(backup_ input)[0].id;

catch (Exception e) {
return "Exception: " + e._Message;
}

}

The function invocation example:

createBackup("ac57a9c3-573b-481a-b398-d2fb0467cf4b™, my backup™, O,
0, "10.16-.3.80", "root"™, "my_password"™, '00000000-0000-0000-0000-
000000000000, *TCP*™, 4433);

Using SOAP API 136

Listing Backups

To get the list of the existing backups, use the backupmBinding. I ist method. The method
retrieves the list of backups from the Hardware Node. If your backup archives are located on a
remote backup server, you have to establish a direct Agent connection with it and execute the
call there. If you have a Virtuozzo group set up, you can use this method on the Master Node to
get the list of backups from any Slave Node in the group.

The backupmBinding. I ist method returns the following backup information:

Name Description
time Backup date and time.
size The size of the backup archive.
type Backup type:
0 -- Full.
1 -- Incremental.
2 -- Differential.
id Backup ID. The ID is assigned to a backup by Agent when the backup

is created. The backup ID is universally unique.

You have to obtain the backup ID in order to restore a Container from

a backup.
storage_eid Server ID of the Node where the backup archive is located.
info Additional backup information.
eid The original Server ID of the source Container.
description Backup description. An optional property set by user. May be empty.
count The total number of backups stored on this Node (storage_eid)

for this Container (eid).

capability Backup capabilities. Specifies miscellaneous backup properties.

Using SOAP API 137

The following sample illustrates how to use the backupmBinding. list method to get the
list of all of the available backups from the Hardware Node.

Sample Function:

/// <summary>
/// Sample function LisBackups.
/// Retrives the list of backups from the
/// Hardware Node.
/// </summary>
/// <returns>
/// A string containing the list of backups
/// with detailed information for each backup.
/// </returns>
///
public string ListBackups()
{
string list result = "";
try {
// Instantiate the proxy class
backupmBinding backupm =
(backupmBinding)binder. InitBinding(typeof(backupmBinding));

// The main input parameter.
list7 list input = new list7(Q);

// Get the list of backups.
backupType[] backups = backupm.list(list_input);

// ltereate through the returned backup structure and
// populate a string variable with the results.
if (backups.Length = 0) {
foreach (backupType backup in backups) {
if (backup.description != null) {
list result += "\nDescription: ";
}

list result +=

System.Text.ASCIIEncoding.-ASCII.GetString(backup.description) +

"\nID: " + backup.id +

"\nServer ID: " + backup.eid +

"\nCount: " + backup.count.ToString() +

"\nSize: " + backup.size.ToString() +

"\nType: " + backup.type.ToString() +

"\nInfo name: " + backup.info.name +

"\nTime: " + backup.time.ToString(Q);

}
}
else {
list result += "\nNo backups found.";
}
}
catch (Exception e) {
list result += "Exception: " + e.Message;
}

return list result;

Using SOAP API 138

The following example illustrates how to use the optional parameters in the backup listing call.
The sample function retrieves the most recent backup for the specified Virtuozzo Container
from the specified Slave Node in a Virtuozzo group.

Sample Function Parameters:

Name Description

slave_eid The Server ID of the Slave Node where the backups are stored. This
can be any Slave Node in a Virtuozzo group. To get the Server IDs of
the Slave Nodes, use the server_groupBinding.get_list
method.

ve eid The Server ID of the Virtuozzo Container to get the backup info for.
The Container can reside on any Node in the Virtuozzo group.

latest A flag indicating whether to retrieve the information about the most
recent backup or about all of the available backups.

Using SOAP API 139

Sample Function:

/// <summary>

/// Sample function ListBackupsVZgroup.

/// </summary>

/// <param name="'slave_eid">

/// Server ID of a slave Node from which to get the list of backups.
/// </param>

/// <param name="ve_eid">

/// Server ID of the Container to search for in the backups.

/// </param>

/// <param name="latest'>

/// A flag. If set to true, the function will retrieve the

/// information about the latest available backup only.

/// 1T set to false, all available backups matching the

/// specified criteria will be retrieved.

/// </param>

/// <returns>A string containing the backup informaiton.</returns>
///

public string ListBackupsVzZgroup(string slave eid, string ve_eid,
Boolean latest)

{

string list result = "";
try {
// Instantiate the proxy class
backupmBinding backupm =
(backupmBinding)binder. InitBinding(typeof(backupmBinding));

// The main input object.
list7 list _input = new list7();

// Set slave Node"s Server ID.
list _input.options.storage eid = slave eid;

// Set Container®"s Server ID.
list_input.options.eid = ve_eid;

// Set the "latest"” flag.
if (latest) {

list_input.options.latest = new Object();
}

// Get the backup info.
backupType[] backups = backupm.list(list_input);

// ltereate through the returned backup array.
if (backups.Length = 0) {
foreach (backupType backup in backups) {
if (backup.description != null) {
list result += "\nDescription: ";
}

list result +=

System.Text.ASCIIEncoding-ASCI I .GetString(backup.description) +

"\nID: " + backup.id +

"\nServer ID: " + backup.eid +

"\nCount: " + backup.count.ToString() +

"\nSize: " + backup.size.ToString() +

"\nType: " + backup.type.ToString() +

"\nInfo name: " + backup.info.name +

Using SOAP API 140

“\nTime: + backup.time.ToString(Q);

}

else {
list result += "\nNo backups found.";
}

}
catch (Exception e) {

list result += "Exception: " + e.Message;
}

return list result;

Using SOAP API 141

Restoring a Container

To restore a Container from a backup archive, you first have to obtain its ID. The backup that
you are restoring from must be one of the following:

= A full backup, containing all the files and directories that are required for the Container to
operate properly.

= An incremental backup, plus all the prior incremental and differential backups, and the
original full backup from the same sequence.

= Addifferential backup, plus the original full backup from the same sequence.

By default, the Container will be restored on the Hardware Node that you are currently
connected to. When you are restoring a Container in a Virtuozzo group, an attempt will be made
to restore it to the original Node. If the original Node is no longer registered with the group,
you'll have to set the target Node manually or the operation will fail. Regardless of the
conditions under which the restore operation is performed, the resulting Container will always
have the same Server ID as the original Container.

The samples in this section illustrates how to use the backupmBinding.restore_env
method to restore a Container from a backup archive. The following sample function accepts a
local backup ID and restores a Container on the current Hardware Node.

Sample Function:

/// <summary>

/// Sample function RestoreBackup.

/// Restores a Container from a backup.

/// </summary>

/// <param name="backup_id">Backup 1D.</param>
/// <returns>"0K"™ or error information.</returns>

///

public string RestoreBackup(string backup_id) {
string list result = "";
try {

backupmBinding backupm =
(backupmBinding)binder. InitBinding(typeof(backupmBinding));

// The main input object.
restore_env restore = new restore_env();

// Set backup id.
restore.backup_id = backup_id;

// Start restore.
backupm.restore_env(restore);

return "OKI!";

catch (Exception e) {
list result += "Exception: " + e.Message;
}

return list result;

}

The following sample shows how to restore a Container from a remote backup. In it, we pass
the backup ID and the backup server connection and login information.

Using SOAP API

142

Sample Function Parameters:

Name Description

backup_id Backup ID.
The rest of the parameters specify the remote backup server
connection and login information.

ip IP address.

user User name.

realm Realm ID.

port TCP port number.

protocol Communication protocol.

password User password.

Using SOAP API 143

Sample Function:

/// <summary>

/// Sample function RestoreRemoteBackup.

/// Restores a Container from a remotely stored backup.

/// </summary>

/// <param name="backup_id'">Backup ID.</param>

/// <param name="ip">Remote HN IP address.</param>

/// <param name="‘user'>

/// User name with which to login to the remote HN node.

/// </param>

/// <param name="realm'>Realm ID.</param>

/// <param name="‘port''>Port number.</param>

/// <param name="‘protocol>Communication protocol.</param>

/// <param name="‘password'>Password.</param>

/// <returns>"0OK" or error information.</returns>

///

public string RestoreRemoteBackup(string backup id, string ip, string
user, string realm, uint port, string protocol, string password)

{

string list result = "";

try {
// Instantiate the proxy class

backupmBinding backupm =
(backupmBinding)binder. InitBinding(typeof(backupmBinding));

// The main input object.
restore_env restore = new restore_env();

//Set backup id.
restore.backup_id = backup_id;

// The backup server connection info.
connection_infoType connection = new connection_infoType();

// Set IP address.
connection.address
auth_nameType name

ip;
new auth_nameType();

// Set user name.
name.name = System.Text.ASCIIEncoding.ASCII.GetBytes(user);

// Set Realm ID.
name.realm = realm;

// Set port number.
connection.portSpecified = true;
connection.port = port;

// Set communication protocol name.
connection.protocol = protocol;
connection.login = name;

// Set user password.
connection.password =
System.Text.ASCIIEncoding.-ASCI I .GetBytes(password);

// Finalize the backup server connection and login
// parameters.

Using SOAP API 144

restore._backup_server = connection;

// Start restore.
backupm.restore_env(restore);

return "OKI!";

}
catch (Exception e) {

list result += "Exception: " + e.Message;
}

return list result;

}

The function invocation example:

restoreBackup(*'85a2dd71-9133-7c44-8521-f6bd517f17cas/0", "10.16.3.80",
“root", "my_password", '00000000-0000-0000-0000-000000000000", "TCP",
4433);

Using SOAP API 145

Getting Container Information From a Backup

Use the backupmBinding.get_info method to get the detailed Container information
from the specified backup archive. The information that can be retrieved includes the basic
Container information (Server 1D, status, host Server ID) and the complete Container
configuration.

On a standalone Hardware Node, the method can access only the local backups. To get the info
about a backup on a remote backup server, you'll have to establish a direct Agent connection
with it. In a Virtuozzo group, the method can get information about a backup located on any
Slave Node.

The following sample shows how to retrieve the Container information from a backup.

Sample Function:

/// <summary>

/// Sample function Getlnfo.

/// Retrives information about the Container stored in the
/// specified backup.

/// </summary>

/// <param name="backup_id">Backup ID.</param>

/// <returns>Container information.</returns>

///
public string Getlnfo(string backup_id)
{

string info_result = "";

try {

// Instantiate the proxy class
backupmBinding backupm =
(backupmBinding)binder. InitBinding(typeof(backupmBinding));

// The main input object.
get_info3 info = new get_info3();

// Set backup id.
info.backup_id = backup_id;

// Populate the retrieval criteria.
get_env_info_optionsType options = new
get_env_info_optionsType();

/* The options.env option is used as a flag.
* IFf the options.env object is created, the result will
* contain the complete Container info, including the
Container configuration.
* 1f not, only the basic Container info will be included.
*/
options.env = new get _env_info_optionsTypeEnv();

/* 1T options.excludes object is created,

* the result will also contain the names of

* the Container files and directories that were included in
* or excluded from the backup.

*/

options.excludes = new object();

Using SOAP API 146

// Set the options.
info.options = options;

// Get the Container info.
env_backup dataType data =
(env_backup_dataType)backupm.get info(info).info;

// Populate a string variable with the returned data.
info_result += "\nEnvironment info:" +

\n Eid: "™ + data.env.eid +
'"\n Parent eid: " + data.env.parent_eid +
"\n Name: " + data.env.virtual config.name;

// Get the configuration description.

if (data.env.virtual config.description != null &&
data.env.virtual_config.description.Length = 0) {
info_result += '"\n Description: " +

System.Text.ASCIIEncoding.ASCII.GetString(data.env.virtual config.desc
ription);

}
// Get the 0OS info.
info_result += "\n Status: " +
data.env.status.state.ToString()+
\n Architecture: " +
data.env.virtual config.architecture+
"\n OS name: " + data.env.virtual _config.os.name+
"\n OS platform: " + data.env.virtual config.os.platform+
"\n OS version: " + data.env.virtual config.os.version+
"\n OS kernel: " + data.env.virtual_config.os.kernel;

// Get the Container IP address.
if (data.env.virtual config.address != null) {

info_result += "\n IP: " +
data.env.virtual_config.address[0]-ip;
}
else {
info_result += "\n No IP address!";
}

// Get the hostname.
if (data.env.virtual config.hostname = null) {
info_result += "\n Hostname: " +
data.env.virtual config.hostname;

}

// Get the sample configuration ID.
if (data.env.virtual config.base sample_id '= null) {
info_result += "\n Base sample id: " +
data.env.virtual config.base _sample_id;
}
3
catch (Exception e) {
info_result += "Exception:
}

return info_result;

+ e._Message;

Using SOAP API 147

Performance Monitor

Performance Monitor is an operator that allows to monitor the performance of the Hardware
Node and Virtuozzo Containers. By monitoring the utilization of the system resources, you can
acquire an important information about your Virtuozzo system health. Performance Monitor can
track a range of processes in real time and provide you with the results that can be used to
identify current and potential problems. It can assist you with the tracking of the processes that
need to be optimized, monitoring the results of the configuration changes, identifying the
resource usage bottlenecks, and planning of upgrades.

Agent SOAP API provides the perf_monBinding class that allows to retrieve performance
reports from the Hardware Node. The types of reports include the performance of the Hardware
Node itself and the performances of individual Virtuozzo Containers. You can select the type
and a particular aspect of the server performance that you would like to see. This performance
type is called a class. The performance aspect is called a counter. The following section
describes classes and counters in detail.

Classes, Instances, Counters
Performance Class

Performance class is a type of the system resource that can be monitored. This includes CPU,
memory, disk, network, etc. A class is identified by its ID. You obtain the IDs of the available
classes by retrieving them from the Agent vocabulary. Each performance class is represented by
a category in the vocabulary. To distinguish the class categories from other categories, they all
belong to another category named counters. Different servers types (generic, virtuozzo) have
their own sets of performance classes. The following are examples of performance class entries
in a vocabulary.

Generic performance class (compatible with physical servers only):

<category>
<id>counters_net</id>
<category>generic</category>
<category>counters</category>
<short>Network usage</short>
<long>Network usage related parameters</long>
</category>

Virtuozzo performance class (compatible with Virtuozzo Containers only):

<category>
<id>counters_vz_net</id>
<category>virtuozzo</category>
<category>counters</category>
<short>Network usage</short>
<long>Container network-related counters</long>
</category>

The following table describes the properties of a performance class:

Property Description

id The unique class ID

Using SOAP API 148

category The name of the parent vocabulary category.

The counters category indicates that this vocabulary entry is a
performance class.

The generic category indicates that this class is compatible
with generic servers (physical machines or virtual servers acting
as if they were real physical servers). Classes compatible with
Virtuozzo Containers belong to the virtuozzo category.

short Short description of the class.

long Long description of the class.

Class Instance

While class identifies the type of the system resource, the term "instance” refers to a particular
device when multiple devices of the same type exist in the system. For example, a network
interface in general is a class, but each network card installed in the system is an instance of that
class. Each class has at least one instance, but not all classes may have multiple instances.

Performance Counter

Counters are used to measure various aspects of a performance, such as the CPU times, network
rates, disk usage, etc. Each class has its own set of counters. Counter data is comprised of the
current, minimum, maximum, and average values. You retrieve the list of counters available for
a particular class from the vocabulary by specifying the class name as the criteria. Performance
counters are stored as parameters in a vocabulary. Each counter has a category property that
contains the name of the performance class this counter belongs to. The following is an example
of a performance counter entry in a vocabulary:

<parameter>
<id>counter_cpu_system</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>System</short>
<long>System CPU time</long>
<measure>seconds</measure>

</parameter>

The following table describes the properties of a performance counter:

Property Description
id A string containing the unique counter identifier.
category A string containing the name of the parent performance class (in

general, the name of the parent vocabulary category).

type A string specifying the data type of the counter values. The
possible values are:

int -- integer.

float -- floating point.

value_type A numeric representation of the counter data type (used internally
by Agent).

Using SOAP API

149

counter_type

An integer representing the counter type. Depending on the type,
the values of the counter can be interpreted differently:

0 -- Periodic counter. Contains the minimum, maximum, and
average values for the given time period.

1 -- Incremental counter. The value of an incremental counter is
always higher or equals to the previous value. A good example is
a network counter that counts the number of bytes the interface
has sent or received. The minimum, maximum, and average
values are the same and represent the difference between the
current value and the value from the previous report.

2 -- Cumulative counter. The minimum, maximum, and average
values are the same and represent the total accumulated value
since the server was started. On server restart, counter values are
reset to zero.

short Short counter description.
long Long counter description.
measure Units of measure (seconds, percent).

Using SOAP API 150

Getting a Performance Report

The following lists contain some of the commonly used performance classes and the counters
from the counters_vz_cpu class as an exmple. You can get the complete list of classes
and their counters from the Agent vocabulary. See Parallels Agent XML Programmer's Reference
guide for more information on how to retrieve the performance classes and counters
information.

Virtuozzo Containers-specific Performance Classes:

counters_vz_cpu

counters_vz_net

counters_vz_loadavg

counters_vz_process

counters_vz_slm

counters_vz_system

counters_vz_memory

counters_vz_hw _net

counters_vz_quota

counters_vz_ubc

Counters from the counters_vz_cpu class:

counter_cpu_system

counter_cpu_user

counter_cpu_idle

counter_cpu_nice

counter_cpu_starvation

counter_cpu_system_states

counter_cpu_user_states

counter_cpu_idle_states

The following is an example of two functions working together that retrieve the latest
performance report using the specified Server ID, performance class, and performance counter.
The function initializes and populates the necessary input parameters, gets the performance data

from Agent, and then calls the getData function (described below) that extracts the data and
puts it into a string that can be displayed on the screen.

Using SOAP API 151

Sample Function Parameters:

Name Description
eid Server ID of the Container for which to retrieve the performance data.
class_name The name of the performance class.

counter_name The name of the performance counter.

Using SOAP AP

152

Sample Function:

/// <summary>

/// Sample function GetPerfData.

/// Gets the Container or the Hardware Node performance data.
/// </summary>

/// <param name="‘eid''></param>

/// <param name="‘class_name'></param>

/// <param name="counter_name''></param>

/// <returns>A string containing the performance data.</returns>
///

public string GetPerfData(string eid, string class name, string
counter_name, string class_instance)

{

string perf _data = ;
try {

// Create binding object.
perf_monBinding perf _mon =
(perf_monBinding)binder. InitBinding(typeof(perf_monBinding));

// The main input object.
get5 get input = new get5();

// Set Server 1ID.
get_input.eid_list = new string[1];
get _input.eid_list[0] = eid;

/* Set the performance class name.

* Multiple classes can be set if desired.
*/

get _input.@class = new classTypel[1l];
get_input.@class[0] = new classTypel();
get_input.@class[0]-name = class _name;

// Set class instance.

get_input.@class[0].instance = new classTypelnstance[1l];

get_input.@class[0].instance[0] = new classTypelnstance();

if (class_instance.lLength = 0) {
get_input.@class[0]-instance[0]-name = class_instance;

// Set counter. Multiple counters can be set if desired.
get_input.@class[0]-instance[0]-counter = new string[1];
get_input.@class[0]-instance[0]-counter[0] = counter_name;

/* Get the performance data. The returned data is
* extracted using the GetData helper function, which
* 1s defined below.
*/
GetData(perf _mon.get(get input), out perf _data);
}
catch (Exception e) {
perf_data += "Exception:
}

return perf_data;

+ e._Message;

}

/// <summary>
/// Sample function GetData.

Using SOAP API 153

/// This is a helper function that extracts the performance

/// data retrieved by the getPerfData function defined above.
/// </summary>

/// <param name='"‘counters_dat''>

/// Contains the data for each class, instance, and counter that
/// were specified in the request that returned this object (the
/// perf_mon.get() call above). To extract the data, we have to
iterate through all

/// of them.

/// </param>

/// <param name="counters_info'>

/// Output. A string containing the extracted data.

/// </param>

///

public void GetData(perf dataType[] counters_dat, out string
counters_info)

{

counters_info = "";

if (counters dat.Length != 0) {

foreach (perf_dataType counter_dat in counters _dat) {
if (counter_dat.@class != null) {
foreach (perf _dataTypeClass dat in counter_dat.@class)
{
counters_info += "\n Class name: " + dat.name +

"\n" +

"Instances:\n"";
if (dat.instance !'= null) {
foreach (perf_dataTypeClasslnstance instance
in dat.instance) {
counters_info += " DataClasslnstance: " +
instance.name + '"\n'';
ifT (instance.counter !'= null) {

foreach
(perf_dataTypeClasslInstanceCounter counter in instance.counter) {
counters_info += " \nName:"" +
counter.name + \n" +
" avg: " +
counter.value.avg + '"\n" +
" cur: ' +
counter.value.cur + "\n" +
" max: ' +
counter.value.max + "\n" +
" min: " +
counter.value.min;
}
}
else {
counters_info += " No counters." +
"\n"';
}
}
else {
counters_info += "No instances.' + '"\n";
}
}
}
else {

counters_info += "No classes." + '"\n"';

}

Using SOAP API 154

counters_info += "Intervals:\n" +
"Start time: " + counter_dat.interval.start time + "\n" +
"End time: " + counter_dat.interval.end _time + '\n" +

"“Server ID:

+ counter_dat.eid + '\n"';

counters_info += "No data returned.";

}
else {
}
}
Monitoring Alerts

Alerts are notifications that report the system resource allocation problems such as approaching
or exceeding certain limits. Alerts are usually used for monitoring of the Container health,
predicting its performance, or collecting information that can be used to optimize the Container
performance. Use the alertmBinding class to check if a Container has alerts of any kind
currently raised and to retrieve the alert data if it does.

The alert levels are described in the table below.

Alert level

ID

Description

Green

0

Normal operation. This alert is raised when one of the higher-
level alerts is canceled.

Yellow

Moderately dangerous situation. The specified parameter is
coming close (within 10%) to its soft limit barrier.

Red

Critical situation. The parameter exceeded its soft limit or came
very close to the hard limit. Depending on the parameter type,
either some process can be killed at any time now, or the next
resource allocation request can be refused.

Black

The worst-case scenario. The hard limit was reached, the
requested resource allocation was refused or some process
overusing the resource was killed. Once raised, the black alert
remains in effect for 5 minutes.

Using SOAP API 155

A Virtuozzo Container may have multiple alerts raised at any given time. The following
function demonstrates how you can check if a Container has any alerts currently raised, and to
retrieve the alert information if it does. The function accepts the list of Containers for which to
check and retrieve the alert information.

/// <summary>

/// Sample function GetAlerts.

/// Retrieves the system alert information for the specified
Container.

/// </summary>

/// <param name="ve_eid'">

/// Server 1D of the Container to get the alerts for.

/// </param>

/// <returns>A string containing the alert information.</returns>
///

public string GetAlerts(string[] ve eid)

{

string list result = "";
try {
// Instantiate the proxy class
alertmBinding alertm =
(alertmBinding)binder.InitBinding(typeof(alertmBinding));

// The main input object.
get _alerts get alerts_input = new get alerts();

//Set Container list.
get _alerts _input.eid_list = ve_eid;

// Get the alert information.
foreach (eventType al_event in
alertm_get_alerts(get_alerts_input)) {
list result += "Data: \n";

// Get the alert data.
resource_alertType res_data =
(resource_alertType)al event.data.event data;
// Read the alert data.
list result += " Class: " + res_data.@class + '"\n" +
// Get counter.
Counter: "™ + res_data.counter + '\n" +
// Get eid.
" Eild: " + res_data.eid + "\n" +
// Get instance.
Instance: " + res_data.instance + '"\n" +
// Get type.
Type: ™ + res_data.type.ToString() + "\n" +
// Get current value.
Cur: " + res_data.cur + '"\n" +
// Get hard limit.
" Hard: " + res_data.hard + "\n" +
// Get soft limit.
" Soft: " + res data.soft + "\n" +
// Get event name.
“"Name: "™ + al_event.info.name + "\n" +
// Get count.
"Count: "™ + al_event.count.ToString() + "\n" +
// Get event category.
"Category: " + al_event.category + "\n" +
// Get event message.

Using SOAP API 156

"Message: " +
System.Text.ASCIIEncoding.-ASCI1.GetString(al_event.info.message) +
"\n" +

// Get parameters
"Parameters: "';
/* Call the helper function to extract the
* event message parameter values.
*/
GetParams(al_event.info.parameter, ref list result);
}
}
catch (Exception e) {
list result += "Exception: " + e.Message;
}
return list result;
}
/// <summary>
/// Sample function GetParams.
/// This is a helper function that extracts the
/// alert message parameter values.
/// </summary>
/// <param name="parameter''>The name of the parameter.</param>
/// <param name="list"''>
/// Output. Values.
/// </param>
///

void GetParams(infoType[] parameter, ref string list)

{

string ss = " ";

foreach (infoType param in parameter) {
list += ss + "Message: " +

System.Text.ASCIlIEncoding.ASCI I ._GetString(param.message) +

Info name: + param.name + "\n'';

if (param.parameter = null) {
GetParams(param.parameter, ref list);
}

Using SOAP API 157

Other SOAP Clients and Their
Known Issues

Visual Basic .NET

Microsoft .NET WSDL and XML parsers still have many bugs. Some of them prevent seamless
usage of classes generated from VZA.wsdl.

After you add and try to compile the Web Reference from
http://www.swsoft.com/webservices/vza/4.0.0/VZA. wsdl, you'll see the
following compilation errors:

= Keyword does not name a type.
= Reference to a non-shared member requires an object
reference.

The first error is caused by name conflicts between the user-defined identifiers and VB
keywords. Usually parsers enclose the identifiers that are identical to VB keywords in square
brackets. Note, however, that this does not work for words like new, which are encountered in
WSDL and XSDs.

In our case, there are problems with the get, stop, set, and select function names. To
solve them, simply double click on each error line in the Task list and enclose the respective
words in square brackets.

The second error is related to the case-insensitive nature of VB -- it confuses the system field
name in the Agent cpu_loadType class with its own System module. To fix this problem,
change the line

<System.Xml.Serialization.XmllgnoreAttribute()>

to
<Xml .Serialization.XmllgnoreAttribute()>

Now you should have the code that compiles and works.

The first group of these problems does not exist in the Visual Studio 2005, but you still have to
delete System from Xml .Serialization.XmllgnoreAttribute() manually.

Visual J# NET

Unfortunately, the current implementation of Visual J# in Visual Studio .NET 2003, due to its
internal bugs, doesn't work with our WSDL. However, it works seamlessly with the Visual
Studio 2005.

Using SOAP API 158

Apache Axis 1.2 for Java

For this client, we have one tip that reveals hidden knowledge of how to work with certificates:

System.setProperty(‘'org.apache.axis.components.net.SecureSocketFactory
'*,org.apache.axis.components.net.SunFakeTrustSocketFactory™);

The code above uses a fake trust manager trusting all certificates. This Java SOAP client also
worked for us.

Using SOAP API 159

Troubleshoting

I'm receiving one of the following errors when trying to connect to the server:

The underlying connection was closed: Unable to connect to the remote
server.

Solution: Check your URL, port and routing to your server.

http://schemas.xmlsoap.org/soap/envelope/:Server, Agent responded with
error

Details:

2704

Authentication failure - either user name or password is incorrect

Solution: Check your login and password.

Somewhere in the middle of an operation, | get the following error:

http://schemas.xmlsoap.org/soap/envelope/:Server, Agent responded with
error

Details:

1004

Error invoking vzctl utility: Container is already running

Solution: Check the state of your Container that is used for the current operation. In the example
above, you try to start a Container and get the error message. This kind of error may occur when
you are starting a Container that is already in the "running" state.

I'm using SOAP with .NET Web Services and | get the following error:

An unhandled exception of type "System.Net.WebException® occurred in
system.Web.services.dll Additional information: The operation has
timed-out.

Solution: .NET SP1 has the default timeout value for the XML Web service calls set to 100000
ms. To avoid this problem, set the appropriate timeout value or set the timeout value to infinite,
as shown in the following example:

MyService servicel = new MyService();

// Infinite timeout.
servicel.Timeout = -1;

// The timeout is set to 10 minutes.
servicel.Timeout = 10 * 60 * 1000;

Microsoft Visual C# .NET 2005 does not compile SOAP applications in Release mode.

When attempting to perform a Release build, the sgen.exe throws Out Of Memory
exceptions.

This is a known defect in Microsoft Sgen tool. To fix this problem, try setting the option Project
> Properties > Build > Generate serialization assembly to OFF to avoid calling sgen . exe.

Using SOAP API 160

161

CHAPTER 5

Advanced Topics

In This Chapter

AGENt CONFIGUIALIONeviiiiiece et re et e raesaesreenaente s 161

W OCADUIATY ...t bbbttt ettt e 161

Internal RequUESt SCEAUIETccve i 162
Agent Configuration

Agent configuration consists of a set of configuration parameters for each of the Agent
operators. The configuration information is stored in a file as an XML document. On Agent
startup, a corresponding director reads the information from the configuration file and uses it to
configure the operators. As a result, all operators are initialized with the parameters currently
stored in the configuration file.

Because the configuration information is stored as an XML document, it can be edited and sent
to Agent from a client program just like any other request. Agent, receiving the configuration
data, will create a new configuration file replacing the existing file. At the same time all free-
pool operators are released, the busy operators are marked for exiting on message processing
completion, and the new operators are invoked newly configured. The single operators -- the
operators that have no pool and are running at all times -- handle the configuration message as a
regular request and reconfigure themselves on the fly. Agent configuration information can be
retrieved and modified using Agent API.

Vocabulary

A significant part of the Agent knowledge base is placed into a vocabulary. This is done in order
to provide the client software with a persistent information, which would otherwise have to be
hard-coded. The vocabulary contains a vast set of categorized parameters with long and short
descriptions, maximal, minimal, and default values, width and alignment, types and measures,
etc. Any client program working with Agent should read the vocabulary as soon as possible in
order to speak the same language as the operating system on the server that the program is
accessing through Agent. The vocabulary contains information about QoS counters with their
names and descriptions, about services and the possible actions on them, about predefined
network protocols and available configuration files, about processes information parameters and
QoS validation formulas.

Advanced Topics 162

Internal Request Scheduler

In order to be able to process more requests and decrease the load on the Hardware Node,
VVZAgent features a simple internal request scheduler. This section describes the scheduler
internals and how you can take advantage of its functionality in your client applications.

Message Classification and Priorities

The messages traveling through Agent are divided into four categories (classes), according to
their priorities and processing time. Before discussing these categories, it is necessary to
mention that the priorities of user messages (priorities of the messages coming from the clients
to Agent before their processing by the operator connection) are not the same as the priorities of
the internal Agent messages. The former are translated into the latter by operator connection, i.e.
on their entrance to Agent.

The four categories (classes) of the messages are:

= Normal messages (default).

= Urgent messages.

= Heavy messages.

= Emergency messages.

Normal messages take a moderate time to be processed (up to 5 minutes by default) and their

priority ranges from -999 to +999 to be set by the client and from -1999 to +1999 internally.
They may include such operations as stopping a server, getting services states, and the like.

Urgent messages take very little time to process (no more than a minute) and have the client
priority range from -3000 to -1000 and the internal priority range from -6000 to -2000. They
may include getting a list of environments, retrieving a user information, starting a log, etc.

Heavy messages take significant time to be processed (from 5 minutes to hours or more). Their
priority ranges from 1000 to 3000 if set by the client and from 2000 to 6000 internally. Among
such messages are creating new Virtuozzo Containers, cloning, migration, template installation,
and others.

Emergency messages are for internal Agent use only and consequently have just internal
priorities below -6000.

Internal messages also differ by the credentials of the original user sending them. Root
messages have higher internal priorities than those issued by a regular user.

The table below summarizes the above considerations:

Messages Heavy Normal Urgent
External priorities 1000 to 3000 -999 to 999 -3000 to 1000
Root internal priorities 2000 to 4000 -1999to0 -1 -6000 to -4000

User internal priorities 4000 to 6000 1to 1999 -4000 to -2000

Advanced Topics 163

Pool and Single Operators

For on-demand requests, the director provides pools of operators that are being forked and
cached as necessary. For example, the server management operator can simultaneously serve up
to 4 Virtuozzo Container creation processes, up to 10 Container stops, and up to 20 Container
configuration fetches by default. It means that the director forks another server management
operator if all of the existing operators are busy. This works up to a certain limit, after which the
next incoming message is queued and its processing begins when one of the existing operators
becomes available.

Pools are strictly concerned with a particular operator and don't intersect in any way. As an
example, the computer management operator pool never interferes with the server management
pool. Any pool consists of two sets of operators. One set is comprised of the busy operators and
the other contains the operators that are currently available. A new incoming message is sent to
one of the available operators. The status of the operator is immediately switched from
"available™ to "busy". Upon completion, the status of the operator is switched to "available”
unless the total number of operators in the pool has already reached the pool limit, in which case
the operator instance is destroyed.

Static limits of pools (limits that are not changed with time unless Agent is reconfigured) consist
of three values - one for each message class. The "heavy" limit allows no more heavy messages
to be simultaneously run than the number represented by its value. The "total" limit does the
same thing for normal plus heavy messages. And the "urgent” limit restricts the number of
urgent + normal + heavy messages. Emergency messages are not limited. All this means that
messages of all types are considered together and if a pool is partially busy with heavy
messages, the number of normal messages to run is reduced, too. Operators for urgent messages
are invoked even if the total limit is reached - that will only make the pool shrink back after the
completion of any requests to a value not greater than the total limit.

The other type of operators are the single operators. These operators run at all times. Unlike the
pool operators, they never fork additional processes. This type of operators include the periodic
collectors (the operators that collect the data on a periodic basis), the event reporters (the
operators that notify the client of the important system events), and some others.

Advanced Topics 164

Dynamic Limits

In an attempt to provide scalability depending on the system load, pool limits are dynamically
changed. Their increase and decrease depend on the completion of processing a request. If the
request is Killed by the timeout, the system is considered to be too loaded for this many
operations of the kind to be performed in parallel, and so the dynamic pool limit is decreased by
1 down to the minimum of 1. If the operation was successful, the dynamic pool limit is
increased by the 1/comeback_ratio value up to the corresponding static limit. It allows a
faster reaction to heavy load peaks and slower recover. Dynamic limits exist for each of the
static limits: normal, heavy, and urgent. Decreasing a dynamic limit happens not only for the
limits of the given message class (judging by the message whose processing was terminated for
the timeout), but also for heavier classes of messages. It means that the timeout of an urgent
message will lead to all of the three dynamic limits being decremented. Incrementing a dynamic
limit would also affects all the limits of lighter classes. Thus, the completion of a heavy message
allows to increment the dynamic limits for all of the message classes. The incremental values
are proportional to the corresponding static pool limits. Here is an example.

Suppose we have the following pools: 4 for heavy, 10 for normal and 20 for urgent messages
and the comeback_ratio equalling 4. A successful completion of an urgent messages will
result in the following increases.

Urgent Dynamic Limit = +1/comeback_ratio.

Normal Dynamic Limit = +1/comeback_ratio/(20/10).

Heavy Dynamic Limit = +1/comeback_ratio/(20/4)

This allows heavier limits not to stick near their minimums if messages of their class are not

coming.

Queue

If a particular pool limit has been reached and the message at hand cannot be served
immediately, it is placed in the queue. The queue is a priority-based collection. Higher-priority
messages are placed before the lower ones. So, a queue overflow may lead to dropping some of
the already queued messages that have a lower priority than those coming now. With the
corresponding operators becoming available, the messages are unqueued and sent for
processing.

The queue has the same principles not only for on-demand operators with their pools, but
everywhere else (even for internal VZAgent messages).

Advanced Topics 165

Timeouts

Timeouts are set for every operation performed by the VZAgent on-demand operators. They are
necessary for preventing system hangs and overloading. Different timeouts are set for each class
of messages. This is achieved by introducing timeout limits.

A timeout limit is the maximal timeout value that can be set for a particular message class. By
default, the timeouts are set at 5 minutes for normal messages, 1 minute for urgent messages,
and 100 hours for heavy messages. All these values are configurable.

When the director receives an XML request message from a client, it sets the default timeout
value for it by populating the timeout_limit attribute of the packet element (the root
element of every message). This value specifies the maximum timeout allowed for this message
class. Upon receiving the message, the operator verifies the specified timeout value. If it is
satisfied with it, it proceeds with the processing of the request. If the value is greater than the
timeout limit for the given message class, the operator returns the message to the director
changing the value to the one it finds appropriate. The director then recalculates the priority of
the message, places it into the corresponding message class, and reschedules it.

166

Index

A

About This Guide * 6
Advanced Topics « 161

Agent Architecture « 16

Agent Configuration « 161
Agent Messages ¢ 22

Apache Axis 1.2 for Java * 158
Authentication Concepts « 18
Authorization « 19

B

Backing up a Container ¢ 132
Backup Operations ¢ 132
Base64-encoded Values » 110

C

Certificates Policy Preparation * 93

Classes, Instances, Counters « 69, 147

Cloning a Virtuozzo Container » 127

Complete Program Code « 101

Configuring a Container « 121

Configuring a Virtuozzo Container * 63

Connecting to Agent « 36

Connection URL « 94

Connectivity « 17

Creating a Container « 113

Creating a Simple Client Application « 35, 91

Creating a Virtuozzo Container « 60

Creating and Configuring Virtuozzo
Containers ¢ 53

D

Destroying a Container « 118
Destroying a Virtuozzo Container » 68
Developing Agent SOAP Clients « 106
Documentation Conventions ¢ 7
Dynamic Limits « 164

E

Elements with no Content » 109
Error Handling « 34
Events and Alerts « 84

F
Feedback ¢ 9

G

General Conventions * 9

Generating Client Code from WSDL « 91

Get/Set Method Name Conflict » 111

Getting a List of OS Templates * 57

Getting a List of Sample Configurations « 54

Getting a Performance Report « 80, 150

Getting Container Configuration Information ¢
120

Getting Container Information From a Backup
145

Getting Started « 10

Installation 13
Internal Request Scheduler « 162
Introduction « 90

K
Key Features « 91
L

Limitations « 91

Listing Backups * 136

Location of XSD and WSDL « 15
Logging In « 38, 50

Logging in and Creating a Session ¢ 96
Login and Session Management ¢ 46

M

Managing Virtuozzo Containers ¢ 112

Message Body « 30

Message Classification and Priorities * 162

Message Header » 25

Migrating a Container to a Different Host ¢
129

Modifying Container Name « 124

Modifying DNS Server Assignment ¢ 126

Modifying Hostname « 123

Modifying IP Address » 121

Modifying QoS Settings « 125

Monitoring Alerts « 154

Monitoring Multiple Environments 84

Multiple Calls and Targets ¢ 32

Index 167

O

Optional Elements « 108

Organization of This Guide * 7

Other SOAP Clients and Their Known Issues ¢
157

Overview « 90

P

Parallels Agent APl « 12

Parallels Agent Overview » 11

Passing parameters explicitly « 64

Performance Monitor « 68, 147

Pool and Single Operators « 163

Populating Container Configuration Structure »
58

Preface « 6

Q
Queue « 164

R

Realms « 18

Receiving Periodic Reports 82

Request Routing 87

Restarting a Virtuozzo Container « 42

Restoring a Container « 141

Retrieving a List of Virtuozzo Containers « 41,
98

Retrieving Container Configuration ¢ 62

Retrieving Realm Information « 47

S

Sessions ¢ 52
Shell Prompts in Command Examples 8
SOAP API Reference « 107
SOAP Object Binding ¢ 95
Starting, Stopping, Restarting « 14
Starting, Stopping, Restarting a Container ¢
116

Step 1

Choosing a Development Project ¢ 92
Step 2

Generating Proxy Classes From WSDL ¢ 92
Step 3

Main Program File « 93
Step 4

Running the Sample « 100
Summary « 43
Suspending and Resuming a Container « 119
System Requirements ¢ 13

T
Terminology « 19

The Complete Program Code « 44
The Null-Terminating Character 33
Timeouts » 110, 165

Troubleshoting ¢ 159

Typographical Conventions « 7

U

Using SOAP API « 90
Using values from a sample configuration ¢ 66
Using XML APl « 21

Vv

Visual Basic .NET « 157
Visual J# .NET » 157
Vocabulary « 161

w
Who Should Read This Guide * 6
X

XML API Basics « 21

XML Message Examples « 24
XML Message Specifications « 22
XML Schema 22

	Preface
	About This Guide
	Who Should Read This Guide
	Organization of This Guide
	Documentation Conventions
	Typographical Conventions
	Shell Prompts in Command Examples
	General Conventions

	Feedback

	Getting Started
	Parallels Agent Overview
	Parallels Agent API

	System Requirements
	Installation
	Starting, Stopping, Restarting
	Location of XSD and WSDL

	Agent Architecture
	Connectivity
	Authentication Concepts
	Realms
	Authorization

	Terminology

	Using XML API
	XML API Basics
	XML Schema
	Agent Messages
	Error Handling

	Creating a Simple Client Application
	Connecting to Agent
	Logging In
	Retrieving a List of Virtuozzo Containers
	Restarting a Virtuozzo Container
	Summary
	The Complete Program Code

	Login and Session Management
	Retrieving Realm Information
	Logging In
	Sessions

	Creating and Configuring Virtuozzo Containers
	Getting a List of Sample Configurations
	Getting a List of OS Templates
	Populating Container Configuration Structure
	Creating a Virtuozzo Container
	Retrieving Container Configuration
	Configuring a Virtuozzo Container
	Destroying a Virtuozzo Container

	Performance Monitor
	Classes, Instances, Counters
	Getting a Performance Report
	Receiving Periodic Reports
	Monitoring Multiple Environments

	Events and Alerts
	Request Routing

	Using SOAP API
	Introduction
	Overview
	Key Features
	Limitations
	Generating Client Code from WSDL

	Creating a Simple Client Application
	Step 1: Choosing a Development Project
	Step 2: Generating Proxy Classes From WSDL
	Step 3: Main Program File
	Step 4: Running the Sample
	Complete Program Code

	Developing Agent SOAP Clients
	SOAP API Reference
	Optional Elements
	Elements with no Content
	Base64-encoded Values
	Timeouts
	Get/Set Method Name Conflict

	Managing Virtuozzo Containers
	Creating a Container
	Starting, Stopping, Restarting a Container
	Destroying a Container
	Suspending and Resuming a Container
	Getting Container Configuration Information
	Configuring a Container
	Cloning a Virtuozzo Container
	Migrating a Container to a Different Host
	Backup Operations
	Performance Monitor
	Monitoring Alerts

	Other SOAP Clients and Their Known Issues
	Visual Basic .NET
	Visual J# .NET
	Apache Axis 1.2 for Java

	Troubleshoting

	Advanced Topics
	Agent Configuration
	Vocabulary
	Internal Request Scheduler
	Message Classification and Priorities
	Pool and Single Operators
	Dynamic Limits
	Queue
	Timeouts

	Index

