Parallels

Parallels Agent

Porting VZAgent 3.0.x applications to Parallels
Agent 4.0.0

1.0

|| Parallels

(c) 1999-2008

ISBN: N/A

Parallels

13755 Sunrise Valley Drive
Suite 600

Herndon, VA 20171

USA

Tel: +1 (703) 815 5670
Fax: +1 (703) 815 5675

© 1999-2008 Parallels. All rights reserved.
Distribution of this work or derivative of this work in any form is prohibited unless prior written permission is
obtained from the copyright holder.

Contents

Preface 4
YA aTo LU I TS o To] ¥ =T o PSS 4
Porting XML Applications 5
e (0o Tot0 IV T 5] o o SOV 6
Identifying Hardware NOGES AN VPSSccvcieiiiiiieiisie ettt sttt sr e tesneerae e nne s 7
Plug-in Architecture, OOP, INNEITANCEcvivereeeier e e st e e saestesraereeneeneennens 9
Virtu0zz0 VE CONFIGUIALION.ciiiiiieie et sttt seentesbesnenre s e eneennenes 10
ViIrtUOZZO VE MaNAGEMENTveveieitisieeteeieseee st ste e ste s e e esae s e testesrestesseaseeseesseseessesteseestesseanansesneeneeseenses 11
Hardware NOGE MaNAGEIMENTc.viiriiiiteieterte etttk b et b et b et b et b et 11
Performance Monitoring and StatisticS COIECTION ..o 12
EVENES BNG AUBIES ...ttt ettt bbbt e e e b et s b e e b e s be e bt e heene e nbeebe st e be et e e e enee e 12
File Transfer and Temporary Upload DIrECIOIYcccoiiiiiiiiiieieie e 13
AUNeNtiCatioN IMANAGEMENT.c..iiiie ettt bbbt be s b e st e e e b e sbesbeebe st e ebe et e e neeneennennas 13
IVHISCEITANEOUS ...ttt ettt bbbttt bbbt ne et b ne e 14

Index 15

CHAPTER 1

Preface

In This Chapter

About This Document

About This Document

The Parallels Agent 4.0.0 XML API is a complete rewrite of the VZAgent 3.0.x API. The new
protocol is not backwards compatible with the older one. This guide discusses the key
differences between the two protocol versions and provides information on how to port the
existing VZAgent 3.0.x applications to Parallels Agent 4.0.0.

CHAPTER 2

Porting XML Applications

This chapter describes how to port the existing VZAgent applications to Parallels Agent 4.0.0.
VZAgent 3.0.3 applications will continue to work with Parallels Agent 4.0.0 without any
changes. Earlier protocol versions are not officially supported so the existing applications using
protocol version earlier than 3.0.3 may not work correctly and therefore should be either
upgraded to version 3.0.3 or ported to version 4.0.0. To upgrade an existing application to
version 3.0.3, all you have to do is to change the protocol version number in the headers of your
XML messages. To port the existing applications to version 4.0.0, you should read this guide
and follow the instructions provided.

If you are going to be using a version 3.0.3 application with Parallels Virtuozzo Containers 4.0,
you should be aware that some of the old VZAgent functionality will not work with it. The
following list describes the interfaces that are no longer supported:

The snapshotm interface is not supported. In the previous version, the interface allowed
to create and manage Virtuozzo OS templates in the EZ Template format which was
introduced in Virtuozzo 3.0. This functionality has been moved to the pkgm interface in
Parallels Agent 4.0.0.

The mai lc interface is not supported. The interface allowed to manage e-mail templates
used for automatic system alert notifications. The format of the templates has changed,
some of the variables have changed as well. This functionality has been moved to the new
mai ler interface.

The nbh interface is no longer supported. The name-based hosting functionality has been
dropped in Virtuozzo Containers 4.0.

The global interface is not supported. The interface allowed to set up and manage a
Virtuozzo group (formerly Virtuozzo cluster) and to perform certain Hardware Node related
tasks. This functionality has been moved to the new clusterm interface in VZAgent 4.0.0.

The support of managing VE ID pools for the Hardware Nodes has been dropped. In
Virtuozzo 4.0, you should manually assign IDs to your VEs during their creation.

In addition, to provide the compatibility with VZAgent 3.0.3 API, you have to assign a
public IP address to the Service VE and set the password for the vzagentO user inside this
VE using the vzctl set command: # vzctl set 1 --ipadd public IP_address
——userpasswd vzagentQ:***xFrkxkx

Porting XML Applications 6

In This Chapter

PrOTOCOI VEISION ...ttt ettt bbbt 6
Identifying Hardware NOdes and VPSSccoiiiiiiiiiiieiese e 7
Plug-in Architecture, OOP, INNEITANCEoiiiieieieee e 9
Virtuozzo VE CoNFIQUIAtION.......c.eoiiiiie e e sttt ettt eneeenne e 10
Virtuozzo VE MaNAgEMENTccvciiiiiiieie ettt ste st e st st saeste s sbesneenenra e 11
Hardware NOde Managementcuo ettt see e nee e 11
Performance Monitoring and Statistics ColleCtioncccoce e 12
EVENES AN ALBIES ...ttt et 12
File Transfer and Temporary Upload Dir€Ctoryccoeoeiiininineneneieesese e 13
Authentication ManagEMENT.........cc.oiiiieiiiiee ettt neenee e 13
IMHSCEITANEBOUS ...ttt et 14

Protocol Version

The current VZAgent protocol version is 4.0.0. The first thing that you have to do is to update
your existing code so that the outgoing XML packets have the correct protocol version. The
protocol version is specified using the version attribute of the packet element, which is the
root element of every VZAgent XML message.

Old version:
<packet version="3.0.3">
New version:
<packet version="4.0.0"">

Porting XML Applications 7

Identifying Hardware Nodes and
VPSS

Prior to VZAgent v.4.0.0, a Hardware Node was identified just like any other computer on a
network -- by IP address or hostname. A VVPS was identified by an internal Virtuozzo ID, which
was assigned to every VPS at the time of creation. The Hardware Node and VPSs were two
completely different and separate entities. In VZAgent 4.0.0, every participating machine
(physical or virtual) is automatically assigned a universally unique ID (called Environment ID
or EID for short) and is identified within VZAgent infrastructure by this ID alone. Every
Hardware Node has an EID which is assigned to it as soon as VZAgent is installed on it. Every
Virtuozzo VE (formerly VPS) also has an EID, which is assigned to to it at the time the VE is
created. In VZAgent 4.0.0 it doesn't matter whether a machine is a physical server (Hardware
Node) or a virtual server (VE) -- all that is needed to access a server and perform administration
tasks on it is the EID.

What this means to you is that most API calls use this ID now instead of Virtuozzo internal VPS
ID, so you will have to update your code accordingly. In addition, new functions were added to
get the list of EIDs from a particular Hardware Node or from a Virtuozzo group (formerly
Virtuozzo cluster). You will have to use these functions to get the list of the available EIDs
when needed.

The following example demonstrates how a VE is started using the two VZAgent API versions.
Note the <ve1d> parameter in v. 3.0.3 and the <e 1d> parameter in v. 4.0.0

VZAgent 3.0.3 and earlier

<packet version="3.0.3" 1d=""611">
<target>vem</target>
<data>
<vem>
<start>
<veid>103</veid>
</start>
</vem>
</data>
</packet>

VZAgent 4.0.0

<packet version="4.0.0" id="2">
<target>vzaenvm</target>
<data>
<vzaenvm>
<start>
<eid>bal7a0c5-9036-473c-a813-aa6f5b36cfl6</eid>
</start>
</vzaenvm>
</data>
</packet>

The Virtuozzo-level VPS ID (or VEID for short) still exists in the current Virtuozzo version but
from the VZAgent API point of view, the significance of this ID has been reduced to the point
where only a very few calls actually use it.

Porting XML Applications 8

The other important difference is that many API calls don't have a parameter that would identify
a VE the call is targeted at. This means that they have neither the old-style VEID nor the new-
style EID parameter. By default, these calls are processed at the Hardware Node level and
perform operations on the Node itself. In order for a call like that to perform its operation on a
particular Virtuozzo VE, you will have to use the call forwarding feature (see the example
below). In comparison, all similar calls in VZAgent v. 3.0.x always had a veid (VPS ID)
parameter. Consider the following example:

VZAgent 3.0.0

Note the ve1d parameter specifying the VPS ID to get the list of files from.

<packet version="3.0.0"">
<target>filem</target>
<data>
<filem>
<list>
<veid>777</veid>
<cwd>Lw==</cwd>
<path>Lw==</path>
</list>
</filem>
</data>
</packet>

VZAgent 4.0.0

The same call in VZAgent 4.0.0 doesn't have the veid parameter. To get the same results as in
the call above, we use the dst/host element in the message header to forward the call to the
Virtuozzo VE specified by its VEID. Without call forwarding we would receive the list of files
from the Hardware Node that we are currently connected to. The calls like that will have to be
identified in your existing code and the necessary changes will have to be made.

<packet version="4.0.0">
<dst>
<host>24b9acf5-8ca5-49c9-b7b1-4c93fe048389</host>
</dst>
<target>filer</target>
<data>
<filer>
<list>
<cwd>Lw==</cwd>
<path>Lw==</path>
</list>
</filer>
</data>
</packet>

Porting XML Applications 9

Plug-in Architecture, OOP,
Inheritance

A plug-in architecture has been introduced in VZAgent 4.0.0. The core VZAgent components
provide the base functionality common to all possible server management types and scenarios.
Plug-in modules are extensions that provide additional functions that are specific to a particular
server management area or technology. The examples of plug-in modules include
Authentication Engine and Virtuozzo VE management. Other plug-ins may be developed in the
near future by SWsoft or by third party developers.

In some cases plug-in modules inherit their functions from the base VZAgent components. For
example, Virtuozzo plug-in inherits many of its interfaces and data types from the base
interfaces and data types. The descendant objects extend the base objects by adding additional
components such as API calls and parameters specific to the functionality that a plug-in module
implements. In VZAgent XML API, not only the base types can be used in descendant calls but
their subtypes as well, so you will have to use the correct type if you want to achieve a desired
result.

What this means to you is that some of the API calls in your application will no longer be valid
because the functionality has been moved to a plug-in module. Calls like that will have to be
identified and will have to be revised. In some cases, only the minor changes will be needed,
like renaming the call itself and changing a few parameters. In others, you will have to rework
the call by making sure that the correct data types are used and that the parameters that use these
types are properly populated.

When processing result sets, the inheritance issues must also be considered in certain cases. The
reason is that based on the type of the information returned, different instances of the same
element in an XML packet may use different subtypes of the same base type. For example,
when retrieving the system event information, the data element in the returned structure will
contain the event or alert type-specific data. Depending on the type of the event or alert, the data
type of the underlying event_data element will be one of the descendants of
event_dataType. Since you might not know in advance the type of the event, you will have
to determine the data type before you can parse the message and handle it properly. None of that
existed in the VZAgent 3.0.x API.

The functional areas that will have to be revised in this respect are as follows:

= Creating Virtuozzo VEs.

= Getting and setting the VE configuration information.

= Package management (standard and EZ templates).

= OS processes management.

= Troubleshooting, problem reporting, support management.
= Virtuozzo VE migration.

= Alerts and Events.

Porting XML Applications 10

Virtuozzo VE Configuration

Prior to VZAgent version 4.0.0, there was a single type that was used to hold the VPS
configuration information. That type was ve_configType. This has changed significantly.

Currently, there's a base type called env_configType (as you can see, the name is different).
When compared to the old-style ve_configType, the new type is missing all of the
Virtuozzo VE-specific parameters such as a list of QoS parameters for example. These
parameters are now defined in a subtype called venv_configType, which extends the base
type. When creating or editing a Virtuozzo VE, or when retrieving the configuration
information for an existing VE, the venv_conFfigType must be used. This means that the
XML element at the root of the config structure must have the attribute specifying the data
type being used, as shown in the following example:
<ns3:virtual config xsi:type="ns4:venv_configType'>
<ns3:hostname>myhost</ns3:hostname>
<ns3:name>Mycomputer</ns3:name>
<ns3:offline_management>1</ns3:offline_management>
<ns3:on_boot>1</ns3:0on_boot>
<ns3:o0s_template>

<ns3:version>20061020</ns3:version>
<ns3:name>redhat-as3-minimal</ns3:name>

</ns3:virtual _config>

The namespaces used in the example above must be defined in the XML message header. For
example, the venv_configType type belongs to the
http://www.swsoft.com/webservices/vza/4.0.0/vzatypes namespace. You
must include this information in the message header before you can use the type. The following
is an example of a namespace declaration:

<packet
xmIns:ns2=""http://www.swsoft.com/webservices/vza/4.0.0/vzatypes"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="4.0.0">

If you look closer at the new venv_configType structure and compare it to the old
env_configType, you'll also see that some of the parameters are no longer there. For
example, such parameters as class_1d (Virtuozzo license class), the nbh-related parameters,
vzcache, and others are now obsolete and therefore have been removed from the type
definition. Many parameters, however, have not changed and are used exactly as they were in
the previous VZAgent version.

Some other changes to the configuration structure will require an additional effort on your part
when porting existing applications. Because of the new features that have been added to
Virtuozzo networking, the network interfaces are now specified in a completely different
manner. In the previous version, the network interface was defined using the single
interface element which contained the interface name, the network class ID, and the
bandwidth rate. Now, to specify the network interface information, you must use the new
net_device element that has more parameters and is designed to handle network interfaces
of different types, including the new Virtuozzo virtual networks. So, if your existing
applications handle the network interface parameters, IP addresses, and other network-related
settings, all of this will have to be reprogrammed. The changes are not drastic. Once you have a
grasp on the basic building blocks, you will be able to make the necessary changes in minutes.

Porting XML Applications 11

Virtuozzo VE Management

Virtuozzo VE management hasn't changed a lot in general but you will still have to revise your
existing code because the interface name, the list of the available calls and the input parameters
have changed.

The old vem interface (VPS management) was replaced with the new vzaenvm interface. Just
as before, to create a VE you use the create call. If you compare the v. 3.0.3 and v. 4.0.0 of
the call, you will see that they look very similar. The changes include replacing the interface
name, the veid (VPS ID) parameter must be replaced with eid (the Environment ID, we
discussed it earlier in this document). The new configuration structure is used in v. 4.0.0 (we
already discussed it too). The new version of the call is now cleaner and easier to understand.
Some additional features were added (the features are optional so not using them will not break
your existing code). Other than that, the base principles of creating a Virtuozzo VE remain
essentially the same.

Some of the VE management calls have the same names as before, some were renamed, and
some were removed from the interface. The calls with the same names will require minor
modifications, in most cases just changing the veid to eid and passing the correct eid value.
The renamed calls must be revised in the same manner -- changing the names of the calls and
verifying that the input parameters and their values. The removed calls are now obsolete.

Hardware Node Management

The old hwm interface no longer exists in VZAgent v. 4.0.0. The functionality that it provided
has been moved to other interfaces, namely envm -- the Environment Management interface;
migrator/vzamigrator -- the VE migration management; env_samplem -- the sample
VE configuration management. The names of the most calls have changed as well. Some of the
old hwm calls were dropped as obsolete. For example get_ssh_key and set_ssh_key are
no longer used because SSH protocol is no longer supported in the current VZAgent version
(TCP and SSL are the protocols used).

If you are using the hwm functionality in your applications, you will have to find the equivalents
of the calls in the new set of API interfaces and will have to rewrite your existing code to use
those interfaces instead. Individual calls will most likely have to be revised as well but the
required changes should be minimal.

Porting XML Applications 12

Performance Monitoring and
Statistics Collection

In VZAgent version 3.0.x, we had "Periodic Operators” which were used to collect performance
data on a periodic basis. Each system resource type had a matching "operator" that provided
functionality for the resource monitoring. There was the hw_cpu operator to monitor the CPU
utilization; the hw_net operator allowed to monitor the network, and so forth. None of these
exist anymore. The old-style performance monitoring has been removed from the API. The all-
new perf_mon interface has been introduced in VZAgent 4.0.0, which now provides the
performance monitoring functionality. The main difference between the old-style Periodic
Operators and the new perf_mon interface is that perf_mon can handle all of the available
types of the resources. It does that by utilizing the new concept of performance classes,
counters, and instances that has been introduced in VZAgent 4.0.0. You simply pass to
perft_mon the appropriate class/counter/instance values and it will monitor the corresponding
system resource for you.

What it means to you is that if you have an application that monitors system resources, it will
have to be re-developed. You will have to add additional code that will retrieve the available
performance classes and counters (although, this information can probably be retrieved just
once and then hard-coded, which is entirely up to you). You will also have to use the new
interface and the calls that it provides. The monitoring results are returned using new structures
as well, so if you have a parser of some sort that processes the results and generates a report
from them, this will also have to be changed.

Events and Alerts

Events and alerts work are handled in the same exact manner as before (you subscribe to event
and alert notifications) with the following exceptions:

= Subscriptions -- the subscription names have changed.

= Result sets -- the structures of the result sets containing the event and alert information have
changed significantly. Some of the parameters and their values have changed as well.

The bottom line is, if you have an existing application that monitors system for events or alerts,
it will have to be revised. The subscription names that you currently use must be replaced with
the new ones. The result set processing must be reprogrammed to handle the new data types,
parameters, and values.

Porting XML Applications 13

File Transfer and Temporary Upload
Directory

The File_transfer interface and the temporary upload directory functionality are no longer
available in VZAgent 4.0.0. The temp directory was used to store the output of the dbm (history
database management) calls as text files that could later be downloaded from the directory using
the File_transfer interface. This is no longer necessary because the new interfaces that
replace the dbm interface (which is now obsolete) return the data directly to the client without
storing it in the temp directory. The new interfaces that replace the dbm interface are op_log
and res_log.

The temp directory was also used as an upload directory for Virtuozzo templates. In VZAgent
3.0.x, you first had to upload a template file to the temp directory using the
file_transfer/write call and then use the tem/set call to install the template. The
tem interface is now also obsolete. The new pkgm interface provides calls for Virtuozzo
template management.

Authentication Management

VZAgent 4.0.0 introduces an entirely new user authentication management system. In VZAgent
3.0.x, user authentication was performed against the operating system user database, a Windows
domain database, or the SSH user database (when an SSH connection was used). The new
system uses a concept of realms. In VZAgent terms, realm is a user database that may reside on
a local machine or on some remote network location. The type of the database can vary from the
operating system user registry to an LDAP-compliant directory. A VZAgent installation can be
made aware of these databases by creating realm definitions and storing them in the VZAgent
configuration files. A user can then be authenticated against any of the available realms.

What it means to you is that in existing applications, the code invoking the API calls where a
user ID and password is required must be revised to use the new-style login parameters and
values. If that's not done, the user authentication will no longer work.

Porting XML Applications 14

Miscellaneous

Most of the other interfaces have also changed in one way or another. In some cases, it is just
the interface, the calls, and the parameters names that got changed. In others -- it's the default
values, the enumerations, and the expected predefined values. Some calls may no longer exist,
some were moved to a different interface, and so forth. All in all, it is safe to say that porting an
existing VZAgent 3.0.x application to VZAgent 4.0.0 will require some work. Most of the effort
will probably go into learning the new API concepts. The actual changes that you will have to
make to your existing code should not be massive but it really depends on the complexity and
size of your application. We believe that you should be able to keep the majority of your
existing code by making modifications where necessary instead of re-writing the entire
application from scratch.

15

Index

A

About This Document « 4
Authentication Management ¢ 13

E
Events and Alerts » 12
F

File Transfer and Temporary Upload Directory
«13

H
Hardware Node Management « 11

I

Identifying Hardware Nodes and VPSs 7
M

Miscellaneous « 14

P

Performance Monitoring and Statistics
Collection » 12

Plug-in Architecture, OOP, Inheritance « 9

Porting XML Applications 5

Preface « 4

Protocol Version « 6

\Y,

Virtuozzo VE Configuration ¢ 10
Virtuozzo VE Management « 11

	Preface
	About This Document

	Porting XML Applications
	Protocol Version
	Identifying Hardware Nodes and VPSs
	Plug-in Architecture, OOP, Inheritance
	Virtuozzo VE Configuration
	Virtuozzo VE Management
	Hardware Node Management
	Performance Monitoring and Statistics Collection
	Events and Alerts
	File Transfer and Temporary Upload Directory
	Authentication Management
	Miscellaneous

	Index

