Parallels

Parallels Agent

SOAP API Tutorial

1.0

|| Parallels

(c) 1999-2008

ISBN: N/A

SWsoft

13755 Sunrise Valley Drive
Suite 325

Herndon, VA 20171

USA

Tel: +1 (703) 815 5670
Fax: +1 (703) 815 5675

© 1999-2007 SWsoft. All rights reserved.

Distribution of this work or derivative of this work in any form is prohibited unless prior written permission is
obtained from the copyright holder.

Virtuozzo, Plesk, HSPcomplete, and corresponding logos are trademarks of SWsoft.

Virtuozzo is a patented virtualization technology protected by U.S. patents 7,099,948; 7,076,633; 6,961,868.
Patents pending in the U.S.

Plesk and HSPcomplete are patented hosting technologies protected by U.S. patents 7,099,948; 7,076,633.
Patents pending in the U.S.

Intel, Pentium, and Celeron are registered trademarks of Intel Corporation.

IBM DB2 is a registered trademark of International Business Machines Corp.

MegaRAID is a registered trademark of American Megatrends, Inc.

PowerEdge is a trademark of Dell Computer Corporation.

Contents

Preface 5
DOoCUMENTALION CONVENTIONS. ... eviieitiitisiesii ettt see et e e seestesbeeteeseeneeeesbesbesaesbeaseaneeseeneeneeneens 5
Typographical CONVENTIONS.ciiiiiiiieiteiee ittt bbbttt st b e bbb e s e e nnas 5

Shell Prompts in Command EXAMPIEScoiiiiiiiiieieiee e 6

GENEIAl CONVENTIONSeitiieitieieieeie ettt sttt b bbbt b e e e e b e sb e b e bt bt e seenb et sbenbesaeeneenennas 6

FRBUADACK ... ettt ettt b e bbbt Ee bbbt et bbb e 6
Introduction 7
What IS PArallels AGENT?....ccui ettt sttt e reere e e e s e e et e stesnenreaneenee e ennees 7

AGENT SOAP AP ..ottt bbb bbb e bbb bR R bRt R bRttt n et bttt ne e 8
DeVelopMENT PLALFOIMS ..o ettt bbbt e 8
INSTAITATION ...ttt bbbt bt h e s e e e b e b e sb e eb e e beeb e e e b e s b e ebe e b e e bt ere e e e e e 9
Choosing Development Project 10
Generating Proxy Classes From WSDL 11
Errors and RESOIULION ..ottt bttt ettt 12
Creating a Simple Client Program 13
MAIN PrOGIAM FIIE ...ttt bbb bbbt bt bt b et e bbbt be et e e e e e e 14
Certificates POICY PrEPATatiONccoouiiiiiiieitieiieieie sttt sttt sb e bbbt e e et b be e eneennea 14
INSEANTIALING PrOXY CIASSES ... vititeitiiieiti ettt ettt bt bbbt e e b e b st e b et be et et en e e e nnas 15
(0701013 T=Tx 1o ¢ 1 U1 OSSPSR 18
Logging in and Creating @ SESSIONcciiiiiieiieieieese e e sttt e et e besbe e e e e e e et e seesbesteeneere e e eneees 18
Retrieving a List 0f VIrtu0ZZ0 CONTAINETSccveveiieiieie e ie et eee e sie e te e st e et st srestesneere e e enee s 20
(000 0] o] 1 3N ad T 2=V 0 O o - TSRS 22
Virtuozzo Container Management 27
Creating 8 VIrtu0Zz0 CONTAINETc.veiiiiieiite ettt b bbbt se bbb b 28
Getting SErver ID FIOM NAIME.......oouii ettt bbbttt se e e e b e besbesbesbeebe et e e e eneennea 32
Starting, Stopping, Restarting @ CONAINET...........ccuiiiiie et e s 33
DESLrOYING @ CONTAINETitiitieieeiieee ettt ettt ettt be s e e e b b e b e s be e b e e b e e nb e besb e besbeebesbeebe et e e e eneees 35
Suspending and ReSUMING @ CONLAINETccviicieiiieie ettt e e et e e b e sresneerae e enes 36
Getting Container Configuration INFOrMAatioNnccciiiiiiiiiiiic e 37

(000 Y o [T TaTo Tk W O] 1 - LT SRR 38
MOGITYING TP AGAIESS ...euveeeeieeee ettt ettt e e e tesrestesreene e e e e eneees 38

MOGITYING HOSENAMEeviceieice ettt se e et srenresreene e e e e eneees 41

Y oo Ty AV Talo I @XoT ol r= U] 1= gl AN Ty oS 42

MOdifYiNG QOS SELLINGS ...veveiviieiiiteieeie ittt ettt st b bt snenrere s 43

Modifying DNS Server ASSIGNMENT........coeiiiieiie ettt sttt 44

Contents 4

Cloning a Virtuozzo Container 45
Migrating a Container to a Different Host 47
Performance Monitor 50
C1aSSES, INSTANCES, COUNTEIS ...ttt ittt ettt sttt b et e b e b ek be bt bt ebe e st e e e s besaesbesbesbe et e e neeneennen 51
Getting @ Performance REPOIToii ittt et sttt se e be b b e besbeebe e e eneennea 54
Monitoring Alerts 58
File Management 60
L ET o 0TSy (o T0] T S 61
LISEING FHIES ..ot bbbt bbbt 63
UPIOAAING 8 FIIE ... bbb bbb b ettt 65
DOWNIOAAING @ FIB......eiiiiiieee bbb bbb bbbt 67

Index 68

CHAPTER 1

Preface

In This Chapter
DOoCUMENTATION CONVENTIONSveiiiiiereieeietrete e sttt e s et eeseareseserareesabreeesasreessaraeeesarreeesarees 5
FROADACK ...ttt et e e e e et ee e et aer —————aeeeeraa—————aaaas 6

Documentation Conventions

Before you start using this guide, it is important to understand the documentation conventions
used in it. For information on specialized terms used in the documentation, see the Glossary at
the end of this document.

Typographical Conventions

The following kinds of formatting in the text identify special information.

Formatting Type of Information Example
convention
Triangular Step-by-step procedures. You can T .
. X o0 create a VE:
Bullet(>) follow the instructions below to
complete a specific task.
Special Bold Items you must select, such as menu Go to the Resources tab.
options, command buttons, or items in
a list.
Titles of chapters, sections, and Read the Basic Administration chapter.
subsections.
Italics Used to emphasize the importance of a These are the so-called EZ templates.
point, to introduce a term or to
designate a command line placeholder, To _ddestroy a VE, type vzctl destroy
which is to be replaced with a real V€19
name or value.
Monospace The names of commands, files, and Use vzctl starttostarta VE.
directories.
Preformatted (o screen computer output in your Saved parameters for VE 101
command-line sessions; source code in
XML, C++, or other programming
languages.
Monospace What you type, contrasted with on- # rpm -V virtuozzo-release
Bold screen computer output.
CAPITALS Names of keys on the keyboard. SHIFT, CTRL, ALT

Preface 6

KEY+KEY Key combinations for which the user CTRL+P, ALT+F4
must press and hold down one key and
then press another.

Shell Prompts in Command Examples

Command line examples throughout this guide presume that you are using the Bourne-again
shell (bash). Whenever a command can be run as a regular user, we will display it with a dollar
sign prompt. When a command is meant to be run as root, we will display it with a hash mark

prompt:
Bourne-again shell prompt $
Bourne-again shell root prompt #

General Conventions

Be aware of the following conventions used in this book.

= Chapters in this guide are divided into sections, which, in turn, are subdivided into
subsections. For example, Documentation Conventions is a section, and General Conventions
is a subsection.

= When following steps or using examples, be sure to type double-quotes ("), left single-
quotes (), and right single-quotes (') exactly as shown.

= The key referred to as RETURN is labeled ENTER on some keyboards.

The root path usually includes the /bin, /sbin, Zusr/bin and Zusr/sbin directories, so
the steps in this book show the commands in these directories without absolute path names.
Steps that use commands in other, less common, directories show the absolute paths in the
examples.

Feedback

If you spot a typo in this guide, or if you have thought of a way to make this guide better, we
would love to hear from you!

If you have a suggestion for improving the documentation (or any other relevant comments), try
to be as specific as possible when formulating it. If you have found an error, please include the
chapter/section/subsection name and some of the surrounding text so we can find it easily.

Please submit a report by e-mail to userdocs@swsoft.com.

Introduction 7

Introduction

What is Parallels Agent?

Parallels Agent is a server-side software that allows client applications to connect to an manage
Virtuozzo Containers over network. Agent can be used for managing, monitoring, and tuning
the Hardware Node and Virtuozzo Containers.

The following list describes the most common tasks that can be performed on Virtuozzo
Containers through Agent:

Creating and destroying a Container.

Starting, stopping, restarting.

Migrating, cloning, moving to a different location.

Backing up.

Getting the status and configuration information.

Modifying configuration parameters.

Obtaining current statistical data and resource usage information.
Setting up Virtuozzo Virtual Networks.

Managing Virtuozzo Security Infrastructure.

Installing, updating, removing Virtuozzo templates.

The following tasks can be performed on Hardware Nodes and Virtuozzo Containers:

Shutting down and restarting.

Managing configuration parameters.

Managing operating system services.

Managing devices.

Managing files and directories.

Managing users and groups.

Retrieving disk, network and other system information.
Monitoring resource consumption.

Receiving notifications about critical events, directly or via e-mail.

Introduction 8

Agent SOAP API

Agent SOAP API is based on open standards like SOAP and WSDL. With SOAP API, you
build your client applications using one of the third-party development tools that can generate
client code from WSDL specifications. The code generated from WSDL documents is a set of
objects in your application's native programming language. You work with data structures using
object properties and you make API calls by invoking object methods.

The SOAP API shares the XML schema with the Agent XML API, so the basic format of the
input and output data is the same in both APIs. Parallels Agent Programmer's Guide, Using XML
API chapter provides general information on the Agent XML schema, the detailed description of
the XML API request and response packets, and other important information. Parallels Agent
XML Programmer's Reference provides a complete XML API reference. When working with
SOAP API, use the XML API reference material to find the descriptions of the calls, their input
and output parameters, and XML code examples.

Development Platforms

In this tutorial we will write our sample code in C# using Microsoft Visual Studio .NET 2005
and Microsoft .NET Framework 2.0.

Agent SOAP API has also been successfully tested with Microsoft Visual Studio .NET 2003
and Microsoft .NET Framework 1.1

Introduction 9

Installation

Server side

Agent software is included in the Virtuozzo Tools package which comes with Parallels
Virtuozzo Containers. Virtuozzo Tools are installed on your server by default during Virtuozzo
Containers installation. If Virtuozzo Tools are not installed on you server, run Virtuozzo
Containers installation program again and select Virtuozzo Tools package to install.

When Agent is installed on your host server for the first time, you will need to know the
password of your system administrator (such as root on Linux or Administrator on
Windows) in order to log in to it from your client program. The system administrator is by
default granted all access rights in Agent, which means that the user can execute any of the
available Agent API calls and access any of the Virtuozzo Containers hosted by the Hardware
Node. You can add more users with specific access rights later using Virtuozzo Tools or
programmatically through Agent.

To verify that Agent is installed and running properly, do the following:

@on Linux, log in to your Hardware Node and execute the following command:
vzagent ctl status

If Agent is running, the output should look similar to the following:

vzagent (pid 31615 29644 25012 22861 8362 7073 7046 7036 7035 7029

7028 7026 7025 7023 7021 7019 7018 7017 7016 7013 7012 7011 7010 7009
7008 7007 7006 7004 7003 7002 7001 7000 6999 6998 6997 6996 6995 6994
6993 6992 6991 6990 6989 6988 6987 6986 6985 6984 6632) is running. ..

If Agent is stopped, the output will look like this:
vzagent is stopped

If something is wrong with Agent, the output may contain additional messages describing the
problem. In such a case, try restarting Agent using the following command:

vzagent _ctl restart
To start or stop Agent, use the following commands respectively:

vzagent _ctl start
vzagent _ctl stop

" On Windows, Agent runs as a Windows service. You can manipulate it by going to the
Services console which is located in the Control Panel / Administrative Tools folder, and
selecting the VZAgent service from the list.

Client side

Your will need Microsoft Visual Studio .NET and Microsoft .NET Framework installed on your
development machine. No additional client software is required.

Choosing Development Project 10

Choosing Development Project

You can choose any type of Visual Studio .NET C# project for your application. Your choice
depends on your application requirements only. For our sample program, let's select C#
Windows console application project and call it VzSimpleClient.

1 In Microsoft Visual Studio .NET, select File > New > Project. The New Project windows
opens.

2 In the Project Types tree, select Visual C# > Windows and then select Console Application in
the Templates pane.

3 Enter VzSimpleClient as the name for your project and choose a location for your
project files and click OK.

Note: If you are using Microsoft Visual Studio .NET 2005 and if your default project files
location is set to C:\Documents and Settings\user_name\My
Documents\Visual Studio 2005\Projects\project_name\. ., you will have
to choose a location with a shorter path. The reason is that there's an issue with Visual Studio
2005 C# method generation from WSDL (we will discuss the issue in detail in the Generating
Stubs From WSDL section). As a solution, we will create a batch file that will fix the problem.
The file will be placed into and run from the directory that contains the Web References
folder (usually ..\Projects\project name\project_name\), but because of the 256
character command line limit imposed by the Microsoft NTFS file system, the full pathname
(including the path and the file name) must fit within this limit or the C# compiler will not be
able to run the batch file.

Generating Proxy Classes From WSDL 11

Generating Proxy Classes From WSDL

1 Inthe Solution Explorer pane, select the VzSimpleClient project.

2 On the Project menu, select Add Web Reference. The Add Web Reference window opens.

In the URL field, type (or copy and paste) this URL:
http://www.swsoft.com/webservices/vza/4.0.0/VZA . wsdl

1 Press the Go button next to the URL field. Visual Studio will try to connect to the SWsoft
web site and retrieve the Agent web service information. After a few seconds (depends on
the connection speed), you should see a single entry in the Web services found at this URL
listbox: 1 Service Found: - VZA

2 Type VZA in the Web reference name field replacing the default value (in general, you can
choose any name that you like). This name will be used in your code as the C# namespace
to access the selected service.

Press the Add Reference button. This will generate proxy classes from Agent WSDL
specifications and will add them to the project. A new item VZA will appear in the Solution
Explorer in the Web References folder. You can now start using generated classes to access
Agent services.

Generating Proxy Classes From WSDL 12

Errors and Resolution

If you are using Microsoft Visual Studio 2005, you may get errors when generating client code
from WSDL. The errors may look similar to the following:

error CS0542: "set xxx": member names cannot be the same as their
enclosing type

The error is produced by the C# compiler when generating the code for the XML schema
similar to the following example:

<xs:element name="set Xxxx">
<xs:complexType>
<Xs:sequence>
<xs:element name=""xxx" type=""XXXtype" />
</Xxs:sequence>
</xs:complexType>
</xs:element>

Note that the function set_xxx has a parameter xxx. Microsoft Visual C# .NET will generate
the following code:

public partial class set xxx {
private string xxxField;

public string xxx {

get {

return this.xxxField;
¥
set {

this.xxxField = value;
b

}
}

As you can see, the function name is the same as the class name. This causes the compiler to
produce those errors.

Resolution:

Create a batch file wsdlc.bat containing the following code and save it in your project
directory:

setlocal

set WS=%1Web References\VZA

copy "%WS%\Reference.map" "%WS%\Reference.discomap"

"C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\wsdl._exe"
/1:CS /fTields /Zout:"%WS%\Reference.cs" /n:%2.VZA

"%WS%\Reference .discomap"

del "%WS%\Reference.discomap"

endlocal

exit /b 0

The file generates the new Reference.cs file (the file containing the proxy classes) fixing
the problem described above by generating the regular properties instead of C#-style get/set
fields. DO NOT try to run the file! It will by run automatically after we complete the rest of the
steps.

Creating a Simple Client Program 13

In the Microsoft Visual C# .NET development environment, select Project > Properties menu
item. Select Build Events option in the left pane. Now in the right pane, modify the parameter
Pre-build Event Command Line to contain the following line:

$(ProjectDir)wsdlc.bat $(ProjectDir) $(ProjectName)

Note: Make sure that the Reference.cs file is not currently opened in the IDE, otherwise
the compiler will use it instead of the new file that will be generated by our batch file.

Select the Build > Build Solution menu option to build your solution. This will take longer than
usual because the wsd I c . bat file that we created will re-generate the proxy classes.

After the build is completed, the Reference.cs file will contain the newly generated stubs.
At this point you can remove or comment out the entry that used in the Project > Properties >
Pre-build Event Command Line option. If you do not, the stubs will be re-generated every time
you build your solution.

If you decide to update the client code from WSDL located on our Web server again, make sure
that you repeat the steps described here again.

Creating a Simple Client Program

The request describing this defect was submitted to Microsoft: #FDBK46565

In this section, we will create a simple Agent client application that will log the specified user in
and will retrieve the list of the Virtuozzo Containers from the Hardware Node. The complete
program code is included in the Complete Program Code section.

Creating a Simple Client Program 14

Main Program File

At this point, you should see the Program.cs file opened in your Visual Studio IDE. This is
the main file where we will write our program code. The file should contain the following code:

using System;

using System.10;

using System.Collections.Generic;
using System.Text;

using VzSimpleClient.VZA;

namespace VzSimpleClient

{
class Program
{
static void Main(string[] args)
// Wait for the user to press a key, then exit.
Console.Read()
}
}
}

We've added the necessary using directives and we've also added the Console.Read()
line to the Main () function to keep the console window open until a keyboard key is pressed.

Certificates Policy Preparation

Since Agent SOAP uses HTTPS as a transport protocol, we have to deal with the certificate
issues. For the purpose of this example, we're going to use the "trust all certificates" policy.
We'll create a class that implements such a policy for us and passes it to the certificate policy
manager during logon.

///<summary>

/// Sample class TrustAllCertificatePolicy.

/// Used as a certificate policy provider.

/// Allows all certificates.

///</summary>

public class TrustAllCertificatePolicy : System.Net.ICertificatePolicy

public TrustAllCertificatePolicy()
{1}

public bool CheckValidationResult(System.Net.ServicePoint sp,
System.Security.Cryptography.X509Certificates.X509Certificate

cert,
System.Net.WebRequest req, int problem)
{
return true;
}

Creating a Simple Client Program

15

Instantiating Proxy Classes

When Visual Studio .NET generates proxy classes for Web services, it names them by taking a
Web service name and appending the "Binding" string to it. For example, the name of the proxy
class for invoking the vzaenvm service will be vzaenvmBinding; the Filer service will
have a proxy class named filerBinding, etc.

Instantiating a proxy class (creating an object from it) is not as straightforward as creating an
ordinary object in your C# program. In this section, we will create a sample class that will
provide methods for creating an object from a proxy class. In addition, the methods of the class
will also set up and populate the header portion of the Agent request message that will be sent to
Agent. Agent request message header contains parameters that provide information on how the
request should be handled on the server side. The most important of those are:

Parameter Name

Description

session

Agent session ID. The session is established on the server side
after successful login and the session ID is returned to the client
program. Each subsequent Agent request sent form the client
must include this ID in order to be recognized and approved by
Agent.

target

The name of the Agent operator to which this request should be
sent for processing. Each Web service has a target operator.
Both the Web service and the corresponding operator have the
same name. As you already know from the beginning of this
section, the first part of the proxy class name is the name of the
Web service, so it is the name of the target operator.

For example, when invoking the vzaenvmBinding object,
this parameter should contain vzaenvm. When invoking the
filerBinding object, the name of the target operator is
filer, and so forth.

Note: There's a single Web service that is an exception to
this rule. The system service (proxy class:
systemBinding) actually requires an omission of this
parameter from the request. For all other services the
parameter must be appropriately set.

dst/host

This parameter is used to specify the Server ID of the Virtuozzo
Container to which the request should be routed. The parameter
should be used with some of the Web services and it should be
ignored with the others. We will talk in detail about request
routing and will provide examples later in the tutorial. The
parameter will be ignored in the beginning sections of the
tutorial.

Creating a Simple Client Program 16

Sample C
/// <sum
/// Samp
/// Prov
/// and
/// </su
public c
{ _
stri
stri

// C
publ

{

}

///
///
//7/
//7/
///
///
//7/
//7/
//7/
///
///
///
publ

{

bindingT

name

requires

lass:

mary>

le class Binder.

ides methods to create the specified binding object
to populate the Agent message header.

mmary>

lass Binder

ng URL; // Agent server URL.

ng session; // Agent session ID.
onstructor. Sets URL and session ID values.
ic Binder(string url, string sess)

URL = url;

session = Sess;

<summary>

Method InitBinding (overloaded).

Instantiates a proxy class.

<param name="bindingType'>

The System.Type object for a proxy class.

To obtain the object, use the typeof operator
with the name of the proxy class as a parameter.
</param>

<returns>

<para>New proxy class object.</para>

</returns>

</summary>

ic System.Object InitBinding(System.Type bindingType)

System.Object Binding =
ype .GetConstructor(System.Type.EmptyTypes) . Invoke(null);

// Set URL.
bindingType.GetProperty("Url') .SetValue(Binding, URL, null);

// Create the request message header object.
packet headerType header = new packet headerType();

// Set session ID.
header.session = session;

/* Set the "target” parameter in the Agent request

message header. The parameter must contain the name

of the corresponding Agent operator.

The operator name can be obtained from the name of the
proxy class. It is the substring from the beginning of the

* & % %

* followed by the "Binding"™ substring. For example, the name
* of the corresponding operator for the "filerBinding" class

* "fFiler™.
* All Agent requests except 'system'™ requests must have the
* target operator value set. System is the only operator that

* the omission of the "target'" parameter from the header.
>/

Creating a Simple Client Program 17

if (bindingType != typeof(systemBinding)) {
header.target = new string[1];
header.target[0] = bindingType.Name.Replace("'Binding",

"
}
// Set the request message header.
bindingType.GetField("'packet header'™).SetValue(Binding,
header) ;
return Binding;
}

/// <summary>

/// Method InitBinding (overloaded).

/// lInstantiates a proxy class.

/// Allows to set destination Container.

/// </summary>

/// <param name="‘bindingType'>

/// The System.Type object for a proxy class.

/// To obtain the object, use the typeof operator

/// with the name of the proxy class as a parameter.

/// </param>

/// <param name="‘eid'>

/// The Server ID of the destination Container to which to route

/// the request message for processing.

/// </param>

/// <returns>

/// <para>New proxy class object.</para>

/// </returns>

/// </returns>

public System.Object InitBinding(System.Type bindingType, string
eid)

{

System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes) . Invoke(null);

// Set URL.
bindingType.GetProperty(""Url') .SetValue(Binding, URL, null);

// Create the request message header object.
packet headerType header = new packet headerType();

// Set session ID.
header.session = session;

/* Set the "target'" parameter in the Agent request
* message header.
*/
if (bindingType != typeof(systemBinding)) {
header.target = new string[1];
header.target[0] = bindingType.Name.Replace(*'Binding",

}

// Set the destination Server ID.
header.dst.host = eid;

// Set the request message header.

Creating a Simple Client Program 18

bindingType.GetField(*'packet_header™).SetValue(Binding,
header);
return Binding;
}

Connection URL

The Agent server listens for the secure HTTPS requests on port 4646. The connection URL will
look similar to the following example (substitute the IP address value with the address of your
server):

https://192.168.0.218:4646

You may also communicate with Agent using HTTP. In this case, the port number is 8080 and
the URL should look like this:

http://192.168.0.218:8080

The URL will be used as an input parameter during the login procedure described in the
following step.

Logging in and Creating a Session

The following is an example of a function that logs the user in using the supplied connection
and login parameters.

Sample function parameters:

Name Description
url Agent server URL. See the Connection URL section (on page 18).
name User name. In this tutorial, we will be login in as a system administrator of the

host server (Hardware Node). You will need to know the password of your
Hardware Node administrator account.

domain We are not going to use this parameter in the tutorial. For more information on
its usage, see Parallels Agent XML Programmer's Reference Guide.

realm Realm ID. Realm is a database containing the user authentication information.
Agent supports various types of authentication databases, including operating
system user registries and LDAP-compliant directories, such as AD/ADAM on
Windows and OpenLDAP on Linux. In our example, we will be using the user
registry of the Hardware Node, which is called System Realm in Agent
terminology. The unique ID that Agent uses for the System Realm is
00000000-0000-0000-0000-000000000000.

Creating a Simple Client Program 19

The function authenticates the specified user and, if the supplied credentials are valid, creates a
session for the user and returns the session ID. All subsequent Agent requests must include the
session ID in order to be recognized and approved by Agent. The Binder class will take care
of including the session ID in the request message header.

Sample function:

//7/
/77
/77
//7/
//7/
//7/
/77
/77
///
//7/
//7/
/77

<summary>
Sample function Login.

Authenticates the user using the specified credentials and
creates a new session.

</summary>

<param name="url">Agent server URL.</param>

<param name="‘name''>User name.</param>

<param name="‘domain’'>Domain.</param>

<param name="‘realm'>Realm ID.</param>

<param name="'password''>Password</param>

<returns>New session ID.</returns>

public string Login(string url, string name, string domain, string
realm, string password)

{

try {
System.Net.ServicePointManager .CertificatePolicy = new

TrustAlICertificatePolicy();

// Login information object.
loginl loginlnfo = new loginl();

/* The sessionmBinding class provides the login and
* session management functionality.

*/

sessionmBinding sessionm = new VZA.sessionmBinding();

/* Instantiate the System.Text.Encoding class that will
* be used to convert strings to byte arrays.

*/

System.Text.Encoding ascii = System.Text.Encoding.ASCII;

// Populate the connection and the login parameters.
sessionm.Url = url;
logininfo.name = ascii.GetBytes(name);
if (domain.Length = 0) {
logininfo.domain = ascili.GetBytes(domain);
}

if (realm_.Length 1= 0) {
logininfo.realm = realm;
3

logininfo.password = ascii.GetBytes(password);

// Log the specified user in.
return sessionm.login(loginlnfo).session_id;

catch (Exception e) {
return "Exception:
}

+ e.Message;

Creating a Simple Client Program

20

Retrieving a List of Virtuozzo

Containers

The following function retrieves a list of Virtuozzo Containers from a Hardware Node. The
function accepts a numeric code specifying the Container state as a parameter allowing you to
retrieve the information only for the Containers in a particular state (running, stopped, etc.). The
state codes are as follows:

(@)
o
o
)

Name

Unknown

Unexisting

Config

Down

Mounted

Suspended

Running

Repairing

O[N]~ W|N|F]|O

License Violation

Creating a Simple Client Program 21

The function returns a string containing the list of names of the existing Containers.

/77
//7/
//7/
//7/
/77
//7/
//7/

<summary>

sample function GetCTList.

Retrieves the list of Containers from a Hardware Node.
</summary>

<param name="'state''>Container state code.</param>
<returns>Container names.</returns>

public string GetCTList(int state)

string list result = "";

try {
// Instantiate the proxy class.

vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

the

// The main input object.
get _listl velist = new get _listli();

/* Set the Container status parameter.
* -1 means ignore the status.
*/
env_statusType[] env_status = new env_statusType[1l];
env_status[0] = new env_statusType();
if (state == -1) {
env_status[0] .stateSpecified = false;

else {
env_status[0] .state = state;
}

velist.status = env_status;
/* Get the list of the Containers then loop through it getting

* Server ID and the name for each Container
*/
foreach (string ve eid in env.get list(velist)) {
get_info2 ve_info = new get_info2();
ve_info.eid = new string[1];
ve_info.eid[0] = ve_eid;

/* Get the Container name from the Container configuration

structure.

* Please note that if the name was not assigned to a
* Container when it was created, the "name'" field will be

empty.

*/
list result +=

env.get_info(ve_info)[0].-virtual_config.name + '\n";

catch (Exception e) {
list result += "Exception: " + e.Message;
}

return list result;

Creating a Simple Client Program 22

Complete Program Code

using System;

using System._10;

using System._Collections.Generic;
using System.Text;

using VzSimpleClient.VZA;

namespace VzSimpleClient

{

class Program

{
Binder binder; // Binder object variable.
string session_id = """; // Agent session ID.
// Main.
static void Main(string[] args)
{

Program vzClient = new Program();

try {
vzClient.Run(Q);
}

catch (System.Web.Services.Protocols.SoapException ex) {
Console._WriteLine(ex.-Code.ToString() + ™, " +
ex.Message) ;
Console _WriteLine('Details:" + ex.Detail.lnnerText);

catch (System.Xml._XmlException xmlex) {
Console._WriteLine(xmlex.ToString());

catch (System.InvalidOperationException opex) {
Console.WriteLine(opex.-Message + '"\n" +
opex. InnerException);

}
Console._WriteLine("'Press Enter to conintinue...");
Console.Read();

}

///<summary>

/// Sample class TrustAllCertificatePolicy.

/// Used as a certificate policy provider.

/// Allows all certificates.

///</summary>

public class TrustAllCertificatePolicy :
System._Net. ICertificatePolicy

{
public TrustAllCertificatePolicy()

{12}

public bool CheckValidationResult(System.Net.ServicePoint
sp,

System.Security.Cryptography.X509Certificates.X509Certificate cert,
System._Net._WebRequest req, int problem)
{

}

return true;

Creating a Simple Client Program 23

}

/// <summary>
/// Sample class Binder.
/// Provides methods to create the specified binding object

/// and

to populate the Agent message header.

/// </summary>
public class Binder

{

string URL; // Agent server URL.
string session; // Agent session ID.

// Constructor. Sets URL and session ID values.
public Binder(string url, string sess)

{

}

/77
//7/
//7/
/77
/77
/77
//7/
//7/
/77
/77
/77

URL url;

session Sess;

<summary>

Method InitBinding (overloaded) .
Creates a binding object.

<param name="'bindingType''>

The name of the proxy class from which to
create the object.

</param>

<returns>

<para>New binding object.</para>
</returns>

</summary>

public System.Object InitBinding(System.Type bindingType)

{

System.Object Binding =

bindingType.GetConstructor(System.Type.EmptyTypes) . Invoke(null);

null);

the
of the name

the name

// Set URL.
bindingType.GetProperty("'Url') .SetValue(Binding, URL,

// Create the request message header object.
packet headerType header = new packet headerType();

// Set session ID.
header.session = session;

/* Set the "target'" parameter in the Agent request

* message header. The parameter must contain the name
* of the corresponding Agent operator.

* The operator name can be obtained from the name of
* proxy class. It is the substring from the beginning
* followed by the "Binding" substring. For example,

* of the corresponding operator for the

“filerBinding"” class is

have the

* "Filer".
* All Agent requests except ''system' requests must

Creating a Simple Client Program 24

* target operator value set. System is the only
operator that requires
* the omission of the "target' parameter from the
header.
*/
if (bindingType != typeof(systemBinding)) {
header.target = new string[1];
header.target[0] =
bindingType.Name.Replace("'Binding"™, '"");
}

// Set the request message header.

bindingType.GetField("'packet header'™).SetValue(Binding, header);
return Binding;
}

/// <summary>

/// Method InitBinding (overloaded).

/// Creates a binding object.

/// Allows to set destination Container.

/// </summary>

/// <param name="'bindingType''>

/// The name of the proxy class from which

/// to create the object.

/// </param>

/// <param name="‘eid">

/// The Server ID of the destination Container to which to
route

/// the request message for processing.

/// </param>

/// <returns>

/// <para>New binding object.</para>

/// </returns>

/// </returns>

public System.Object InitBinding(System.Type bindingType,
string eid)

System.Object Binding =
bindingType.GetConstructor(System.Type.EmptyTypes) . Invoke(null);

// Set URL.
bindingType.GetProperty(""Url') .SetValue(Binding, URL,
null);

// Create the request message header object.
packet headerType header = new packet headerType();

// Set session ID.
header.session = session;

/* Set the "target' parameter in the Agent request
* message header.
*/
if (bindingType != typeof(systemBinding)) {
header.target = new string[1];
header.target[0] =
bindingType.Name.Replace("'Binding™, '"");
}

Creating a Simple Client Program 25

// Set the destination Server ID.
header.dst.host = eid;

// Set the request message header.

bindingType.GetField("'packet header'™).SetValue(Binding, header);
return Binding;

}

//7/
/77
/77
/77
//7/
//7/
/77
/77
/77
//7/
//7/
/77

}

<summary>
Sample function Login.
Authenticates the user using the specified credentials and
creates a new session.

</summary>

<param name="url'>Agent server URL.</param>
<param name="‘name''>User name.</param>
<param name="‘domain''>Domain.</param>

<param name="‘realm'>Realm ID.</param>
<param name="‘password'>Password</param>

<returns>New session ID.</returns>

public string Login(string url, string name, string domain,
string realm, string password)

{

will

try {

System.Net.ServicePointManager .CertificatePolicy = new
TrustAlICertificatePolicy();

// Login information object.
loginl logininfo = new loginl();

/* The sessionmBinding class provides the login and

*

*/

session management functionality.

sessionmBinding sessionm = new VZA_sessionmBinding();

/*

*

*/

Instantiate the System.Text.Encoding class that

be used to convert strings to byte arrays.

System.Text.Encoding ascii =
System.Text.Encoding.ASCII;

// Populate the connection and the login parameters.
sessionm.Url = url;

logininfo.name = ascii.GetBytes(name);

if (domain.Length = 0) {

}

logininfo.domain = ascili.GetBytes(domain);

if (realm.Length != 0) {

}

logininfo.realm = realm;

logininfo.password = ascii.GetBytes(password);

// Log the specified user in.
return sessionm.login(loginlnfo).session_id;

catch (Exception e) {

Creating a Simple Client Program 26

}

return "Exception: + e.Message;

/// <summary>

/// sample function GetCTList.

/// Retrieves the list of Virtuozzo Containers from the
Hardware Node.

/// </summary>

/// <param name="'state''>Container state code.</param>

/// <returns>Container names.</returns>

//7/

public string GetCTList(int state)

{

string list result = "";

try {
// Instantiate the proxy class.

vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

getting the

// The main input object.
get listl velist = new get listl();

/* Set the Container status parameter.
* -1 means ignhore the status.
*/
env_statusType[] env_status = new env_statusType[1l];
env_status[0] = new env_statusType();
if (state == -1) {
env_status[0] -stateSpecified = false;

}
else {

env_status[0] .state = state;
}

velist.status = env_status;
/* Get the list of the Containers then loop through it

* Server ID and the name for each Container

*/

foreach (string ve eid in env.get list(velist)) {
get_info2 ve_info = new get info2();
ve_info.eid = new string[1];
ve_info.eid[0] = ve_eid;

/* Get the Container name from the Container

configuration structure.

* Please note that if name was not assigned to a
* Container when it was created, the "name" field

will be empty.

*/
list result +=

env.get_info(ve_info)[0].virtual config.name + "\n';

}
catch (Exception e) {

list result += "Exception: " + e.Message;
}

return list result;

Virtuozzo Container Management 27

}

/// <summary>

/// The Run() function is called from Main().-

/// 1t contains the code that executes other sample functions.
/// </summary>

///

public void Run()

/* The Agent server URL. Use the IP of
* your own Hardware Node here.

*/

string url = "http://10.30.67.54:8080/";

// User name.
string user = "root";

// Domain name.
string domain = "";

/* Realm 1ID.

* We are using the "system" realm here, so the
* user will be authenticated against the

* host operating system user registry.

*/
string realm = "00000000-0000-0000-0000-000000000000";
string password = "1g2w3e";

// Log the user in.

session_id = this.Login(url, user, domain, realm,
password) ;

Console._WriteLine("'Session ID: " + session_id);

Console._WriteLine();

// Create the Binder object.
if (binder == null) {

binder = new Binder(url, session_id);
}

// Get the list of Containers from the Hardware Node.
Console._WriteLine(GetCTList(-1));
Console._WriteLine();

Virtuozzo Container Management

}

The material in this section provides sample code and explains how to perform the most
common Virtuozzo Container management tasks.

Virtuozzo Container Management 28

Creating a Virtuozzo Container

When creating a new Virtuozzo Container, the following configuration parameters are
mandatory and must be selected every time:

Sample configuration name. Virtuozzo Containers software comes with a set of sample
configurations that are installed on the Hardware Node at the time the Virtuozzo Containers
software is installed. XML API provides the env_samplem/get_sample_conf call to
retrieve the list of the available configurations. In the example provided in this section, the
C# equivalent of that call is the env_samplemBinding.get _sample_conf()
method.

Operating System Template. The list of the available templates can be retrieved using the
vzapkgm.get_list XML API call. The C# equivalent is
vzapkgmBinding.get list call. For simplicity, we are not including this call in the
example because Virtuozzo Containers for Windows currently comes with just one OS
template, and Virtuozzo for Linux has one template for each supported Linux distribution.
For example, the standard Red Hat Linux OS template name is redhat-as3-minimal.

The rest of the parameters that we use in this example are optional but are typically used when a
new Container is created. The following sample shows how to create a Virtuozzo Container.

Sample Function Parameters:

Name Description

name The name that you would like to use for the Container.
os_template The name of the OS template to use for the Container.
platform Operating system type: Iinux or windows. This parameter

will be used in our function to select a sample configuration for
the Container. If the sample configuration is compatible with
the specified platform, we will use it. In a real application, you
would probably select the sample configuration in advance and
would pass its name to the method that actually creates a
Container. In this example, we automate this task while
providing a demonstration of how to retrieve the list of the
available sample configurations.

architecture CPU architecture, e.g. x86, 1a64. This parameter, together

with the platform parameter (above) will also be used to
determine the sample configuration compatibility with the
specified CPU architecture.

hostname The hostname that you would like to use for the Container.

The IP address to assign to the Container.

netmask Netmask.

network Network interface ID: venetO for Linux; venetl for

Windows. These are the standard host-routed Virtuozzo
network interfaces. For other network configuration scenarios,
please refer to Parallels Agent XML Programmer's Reference.

Virtuozzo Container Management

29

offline_management

Specifies whether to turn the Container Offline Management
feature on or off.

Virtuozzo Container Management

30

Sample Function:

/// <summary>

/// Sample function CreateCT.

/// Creates a new Virtuozzo Container.

/// </summary>

/// <param name="name''>Container name.</param>

/// <param name="'‘os_template'>0S template name.</param>

/// <param name="platform>Operating system type: linux or
windows.</param>

/// <param name="architecture">CPU architecture (x86, ia64)</param>
/// <param name="hostname''>Container hostname.</param>

/// <param name="ip">Container IP address.</param>

/// <param name="netmask'>Netmask.</param>

/// <param name="network>Network interface ID.</param>

/// <param name="offline_management'>

/// A flag specifyin whether to turn the "offline management"
/// feature on or off.

/// </param>

/// <returns>Server ID of the new Container.</returns>

public string CreateCT(string name, string os_ template, string
platform, string architecture, string hostname, string ip, string
netmask, string network, bool offline_management)

{

try {
// Instantiate the proxy class.

vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
create create_input = new create();

// Container configuration information.
venv_configTypel veconfig = new venv_configTypel();

/* Retrieve the list of sample configurations.
* Select the first one that is compatible with the
* specified platform (Linux, Windows) and CPU architecture.
*/
env_samplemBinding env_sample =
(env_samplemBinding)binder. InitBinding(typeof(env_samplemBinding));
get_sample_conf get sample = new get sample_conf();
sample_confType[] samples =
env_sample.get _sample_conf(get_sample);

if (samples = null) {
foreach (sample_confType sample in samples) {
if (sample.env_config.os = null) {
if (sample.env_config.os.platform == platform &&
sample.env_config.architecture == architecture) {

// Set sample configuration ID.
veconfig.base sample _id = sample.id;
break;

}

// Set OS template.
templateType osTemplate = new templateType();

Virtuozzo Container Management

31

osTemplate.name = os_template;
veconfig.os_template = osTemplate;

// Set Container name
veconfig.name = name;

// Set Container hostname
veconfig.hostname = hostname;

// Set Container IP address and netmask.
ip_addressType[] ip_address = new ip_addressType[l];
ip_address[0] = new ip_addressType(Q);
ip_address[0].ip = ip;

ip_address[0].-netmask = netmask;

// Set network.

net_vethType[] net = new net vethType[l];
net[0] = new net vethType(Q;

net[0]-host routed = new object();
net[0].id = network;

net[0].ip_address = ip_address;
veconfig.net _device = net;

// Set the offline management feature.
veconfig.offline_managementSpecified = true;
veconfig.offline_management = offline_management;

// Finalize the new Container configuration.
create_input.config = veconfig;

// Create the Container.
return env.create(create_input).env.eid;

}
catch (Exception e) {

return "Exception:
}

+ e._Message;

}
The function invocation example:

createCT("'sample_ve'", "redhat-as3-minimal', "linux','x86",
"sample_ve_ hostname', "10.16.3.179", '255.255.255.0", '"'venet0", true

);

Virtuozzo Container Management

32

Getting Server ID From Name

The following is a simple function that will get the Server ID of a Container using its name.
This function can be helpful when you want to use any of the other functions that accept the
Server ID as a parameter. The reason is that you usually know the name of the Container that
you would like to work with, but you most likely don't know its Server ID (the globally unique
ID that Agent automatically assigns to every Container).

/// <summary>

/// Sample function NameToEid.

/// Gets the Server ID of the Container specified by its name.
/// </summary>

/// <param name="name''>Container name.</param>

/// <returns>Server 1D of the Container.</returns>

public string NameToEid(string name)

{

try {
// Instantiate the proxy class.

vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

name) {

get_info2 getinfo = new get info2();
getinfo.eid = new string[1];

get listl velist = new get listli();
string eids = ""';

string[] nn = env.get list(velist);

foreach (string eid in nn) {

getinfo.eid[0] = eid;
envType[] envs = env.get info(getinfo);
if (envs.Length = 0) {
if (env.get _info(getinfo)[0].virtual config.name ==

eids = eid;
break;

else {
eids = "
}

return eids;

catch (Exception e) {

}

return "Exception: " + e._Message;

Virtuozzo Container Management 33

Starting, Stopping, Restarting a
Container

To start a Container, use the vzaenvmBinding.start() method passing the Server ID.
See Creating a Simple Client Program (on page 13) for the example on how to obtain the list of
the Server IDs.

/// <summary>
/// Sample function StartCT.
/// Starts the specified Container.
/// </summary>
/// <param name="‘ve_eid''>The Server ID of the Container.</param>
/// <returns>"0K"™ or error information.</returns>
public string StartCT(string ve_eid)
{
try {

// Instantiate the proxy class.
vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
start start_input = new start();

// Set Server ID.
start_input.eid = ve_eid;

// Start the Container.
env.start(start_input);

return "OKI";
}
catch (Exception e) {
return "Exception:
}

+ e._Message;

}

Stopping and Restarting a Container is similar to the example above. The following two
functions demonstrate how it's done.

/// <summary>

/// Sample function StopCT.

/// Stops a Container.

/// </summary>

/// <param name="ve_eid'>Server 1D of the Container.</param>
/// <returns></returns>

public string StopCT(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
stopl stop_input = new stopl();

// Set the Server ID of the Container.
stop_input.eid = ve eid;

Virtuozzo Container Management

34

// Stop the Container.
env.stop(stop_input);

return "OKI!";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

}

/// <summary>

/// Sample function RestartCT.

/// Restarts a Container.

/// </summary>

/// <param name="'ve_eid'>Container Server ID.</param>
/// <returns></returns>

public string RestartCT(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
restartl restart_input = new restartl();

// Set the Server 1D of the Container.
restart_input.eid = ve_eid;

// Restart the Container.
env.restart(restart_input);

return "OKI";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

Virtuozzo Container Management 35

Destroying a Container

To destroy a Container, use the vzaenvmBinding.destroy() method. The method
accepts the Server ID of the Container as a single parameter.

/// <summary>

/// Sample function DestroyCT.

/// Destroys a Container.

/// </summary>

/// <param name="'ve_eid'>Server ID of the Container.</param>
/// <returns>"0K"™ or error information.</returns>

public string DestroyCT(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
destroy destroy_ input = new destroy();

// Set the Server ID.

destroy input.eid = ve eid;
env.destroy(destroy_ input);

return "The Container has been destroyed.';

catch (Exception e) {
return "Exception: " + e_Message;
}

Virtuozzo Container Management 36

Suspending and Resuming a
Container

The following two examples show how to suspend and then resume a Virtuozzo Container.

/// <summary>

/// Sample function. Suspends a Container.

/// </summary>

/// <param name="'ve_eid'>The Server ID of the Container.</param>
/// <returns>"OK" or error information.</returns>

public string SuspendCT(string ve eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
suspendl suspend_input = new suspendl();

// Set the Container Server ID.
suspend_input.eid = ve eid;

// Suspend the Container.
env.suspend(suspend_input);

return "OKI!";

catch (Exception e) {
return "Exception: " + e._Message;
}

}

/// <summary>

/// Sample function ResumeCT.

/// Resumes a Container that was previuosly suspended.
/// </summary>

/// <param name="ve_eid'"></param>

/// <returns></returns>

public string ResumeCT(string ve_eid)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));
resumel resume_input = new resumel();

//Set the Container Server ID.
resume_input.eid = ve eid;

// Resume Container.
env.resume(resume_input);

return "OKI!";

catch (Exception e) {
return "Exception: " + e_Message;
}

Virtuozzo Container Management 37

Getting Container Configuration
Information

A Container configuration information is stored on the Hardware Node. This configuration (also
called virtual configuration) is used by Virtuozzo Containers to set the necessary Container
parameters when the Container is started. To retrieve a Copntainer configuration, use the
vzaenvmBinding.get_info method. For the complete list and description of the input
parameters, see the vzaenvm/get_info call in the Parallels Agent XML Programmer's
Reference guide.

The following sample shows how to retrieve the complete configuration information for the
specified Container.

/// <summary>
/// Sample function GetConfig.
/// Retrives Container configuration information.
/// </summary>
/// <param name="ve_eid'>The Container Server I1D.</param>
/// <returns>
/// A string containing the Container configuration information.
/// </returns>
public string GetConfig(string ve eid)
{
string ve_info = ""';
try {
// Instantiate the proxy class.
vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The input parameters.
get_info2 getlnfo_input = new get info2();
string[] eids = new string[1];

// Set the Server ID of the Container for which to get the
info.

eids[0] = ve_ei

getinfo_input.e

// Get the Container information from the Hardware Node.
envType[] envtype = env.get info(getinfo_input);

// Get the Container configuration from the returned object.
venv_configType veconfig = envtype[0]-virtual_config;

// Get Container name.
ve_info += "Name: " + envtype[O].-virtual config.name + *\n";

// Get Contailner description.
it (envtype[O]-virtual _config.description !'= null &&
envtype[0]-virtual _config.description.Length 1= 0)
ve_info += "Description: " +

System.Text.Encoding-ASCII .GetString(envtype[0].virtual_config.descrip
tion) + "\n" +
//Get network configuration.

Virtuozzo Container Management

38

"Network configuration: \n';

if (envtype[O].virtual _config.address !'= null) {
ve_info += "IP: " + veconfig.address[0].-ip + "\n" +
"Netmask: " + veconfig.address[0].netmask + "\n";

// Get Container hostname.
ve_info += "HostName: " + veconfig.hostname + "\n" +
// Get architecture
"Architecture: " + veconfig.architecture + '"\n" +
// Get 0OS
"0S name: " + veconfig.os.name + \n" +
"0S platform: " + veconfig.os.platform + "\n" +
"0S kernel: "™ + veconfig.os.kernel + "\n" +
"0S version: " + veconfig.os.version + \n" +
// Get status
"Status: " + envtype[O].status.state.ToString() + "\n" +
// Get QoS information.
"QoS cur: " + veconfig.qos[0]-cur.ToString() + '"\n" +
"QoS hard: " + veconfig.qos[0].hard.ToString() + "\n" +
"QoS id: " + veconfig.qos[0]-id + '\n" +
"QoS soft: " + veconfig.qos[0].soft.ToString();// +"\n";

catch (Exception e) {

}

ve_info += "Exception: " + e.Message;

return ve_info;

Configuring a Container

This section shows how to modify a Container configuration. It is organized into subsections
each demonstrating how to modify a particular configuration parameter. The basic idea behind
modifying the Container configuration is simple. Agent SOAP API has classes that hold the
Container configuration parameters. You instantiate the necessary classes (depending on the
parameter type) and populate only those members (configuration parameters) that you would
like to modify. You then submit the populated objects to Agent using the appropriate class and
method. Upon receiving the new configuration, Agent will updated only those parameters that
you specified in the input structure.

Modifying IP Address

Sample Function Parameters:

Name

Description

ve_eid

The Server ID of the Container for which you would like to modify the
configuration info.

Virtuozzo Container Management

39

new_ip The new IP address. A Virtuozzo Container may have multiple IP addresses
assigned to it. When modifying the IP address information, all of the existing
address information will be removed from the configuration and the new
addresses will be put in their place. In this example, we will be operating with
a single IP address for simplicity.

netmask New netmask.

network The name of the network interface for which you would like to modify the IP

address settings.

Virtuozzo Container Management 40

Sample Function:

/// <summary>

/// Sample function ModifylP.

/// Modifies the Container IP address.

/// </summary>

/// <param name="'ve_eid''>The Container Server ID.</param>
/// <param name="new_ip">New IP address.</param>

/// <param name="netmask™>New netmask.</param>

/// <param name="network>Network interface name.</param>
/// <returns>"0OK"™ or error information.</returns>

public string ModifylP(string ve eid, string new_ip, string netmask,
string network)

{

try {
// Instantiate the proxy class.

vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

// The main input object.
set2 set_input = new set2();

// Set the Container Server ID.
set_input.eid = ve _eid;

// The Container configuration structure.
venv_configTypel veconfig = new venv_configTypel();

// Set ip addresses.

ip_addressType[] ip_address = new ip_addressType[l];
ip_address[0] = new ip_addressType(Q);
ip_address[0].ip = new_ip;

ip_address[0] .netmask = netmask;

// The network interface information structure.
net_vethType[] net = new net vethType[l];
net[0] = new net vethType(Q;

// Set the network parameters.
net[0]-host _routed = new object();
net[0].id = network;
net[0].ip_address = ip_address;
veconfig.net _device = net;
set_input.config = veconfig;

// Modify the Container configuration.
env.set(set _input);

return "OKI!";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

Virtuozzo Container Management

41

Modifying Hostname

//7/
//7/
/77
/77
/77
//7/
//7/

<summary>
Sample function ModifyHostname.

Modifies Container hostname.

</summary>

<param name="'ve_eid'"'>The Container Server ID.</param>
<param name="‘new_hostname">New hostname.</param>
<returns>0K/Error .</returns>

public string ModifyHostname(string ve _eid, string new_hostname)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

set2 set _input = new set2();

// Set the container Server ID.
set_input.eid = ve _eid;

venv_configTypel veconf = new venv_configTypel();

// Set the new hostname.
veconf._hostname = new_hostname;
set_input.config = veconf;

// Modify the Container configuration.
env.set(set _input);

return ""OKI!";

catch (Exception e) {
return "Exception:
}

+ e.Message;

Virtuozzo Container Management

42

Modifying Container Name

//7/
//7/
/77
/77
/77
//7/
//7/
/77

<summary>
Sample function ModifyName.

Modifies Container name.

</summary>

<param name="'ve_eid'"'>The Container Server ID.</param>
<param name="‘new_name'>New Container name.</param>
<returns>0K/Error .</returns>

public string ModifyName(string ve_eid, string new_name)

{

try {
vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

set2 set _input = new set2();

// Set the Container Server ID.
set_input.eid = ve _eid;
venv_configTypel veconf = new venv_configTypel();

// Set new Container name.
veconf._name = new_name;
set_input.config = veconf;

// Modify the Container configuration.
env.set(set _input);

return ""OKI!";

catch (Exception e) {
return "Exception:
}

+ e.Message;

Virtuozzo Container Management

43

Modifying QoS Settings

/// <summary>
/// Sample function ModifyQoS.
/// Modifies Container QoS settings.
/// </summary>
/// <param name="'ve_eid''>The Container Server ID.</param>
/// <param name="qos_id">QoS ID.</param>
/// <param name="hard">New hard limit value.</param>
/// <param name="'soft'>New soft limit value.</param>
/// <returns></returns>
public string ModifyQoS(string ve eid, string qos_id, int hard,
soft)
{
try {

vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

set2 set_input = new set2();

// Set the Container Server ID.
set_input.eid = ve _eid;

venv_configTypel veconfig = new venv_configTypel();
// Set Container QoS.

veconfig.gqos = new gosType[1l];

veconfig.gqos[0] = new gosType();

// Set QoS ID.
veconfig.qos[0]-id = qos_id;

// Set hard limit

veconfig.qos[0] -hardSpecified = true;
veconfig.qos[0]-hard = hard;

// Set soft limit

veconfig.qos[0] -softSpecified = true;

veconfig.qos[0] -soft = soft;

// Modify the Container configuration.
set_input.config = veconfig;
env.set(set_input);

return "OKI';

catch (Exception e) {
return "Exception: " + e_Message;
}

int

Virtuozzo Container Management

44

Modifying DNS Server Assignment

//7/
//7/
/77
/77
/77
//7/
//7/

{

<summary>
Sample function ModifyDNS.

Modifies Container DNS server assignment.

</summary>

<param name="'ve_eid'"'>The Container Server ID.</param>
<param name="'‘new_nameserver'>New nameserver name.</param>
<returns>0K/Error .</returns>

public string ModifyDNS(string ve eid, string new_nameserver)

try {

vzaenvmBinding env =

(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

}

set2 set _input = new set2();

// Set the Container Server ID.
set_input.eid = ve _eid;

// Container configuration.
venv_configTypel veconfig = new venv_configTypel();

// Network device.
veconfig.net _device = new net_vethType[1];
veconfig.net _device[0] = new net_vethType();

// Set Container DNS.
veconfig.net_device[0].nameserver = new string[1];
veconfig.net_device[0].nameserver[0] = new_nameserver;

// Modify Container configuration.
set_input.config = veconfig;
env.set(set_input);

return "OKI!";

catch (Exception e) {

}

return "Exception: + e._Message;

Cloning a Virtuozzo Container 45

Cloning a Virtuozzo Container

Cloning refers to a process of creating an exact copy (or multiple copies) of a Virtuozzo
Container on the same Hardware Node. The new Container will have its own private area and
root directories but the rest of the configuration parameters will be exactly the same. This means
that even the parameters that should be unique for each individual Container (IP addresses,
hostname, name) will be copied unchanged. You don't have an option to specify new
configuration parameter values during the cloning operation. Instead, you will have to clone the
Container first and then update the configuration of the new Container in a separate procedure.
There are a few exceptions to this rule. You can optionally specify custom private area and root
directories for the new Container, but only if you are creating a single copy of the source
Container. You also have an option to specify custom Container ID for each clone. If you don't
want to set these options manually, their values will be selected automatically.

You can clone both running and stopped Containers. There are some differences when cloning
Containers on Windows and on Linux platforms:

@ on Linux, the running source Container will be suspended momentarily during the cloning
operation. This is done in order to eliminate possible changes to the Container state and status.
Once all of the data is read from the source Container, the Container is resumed and the cloning
operation proceeds normally.

On Windows, a snapshot of the Container is taken on the fly, so the source Container
operation is never interrupted during cloning.

The following sample illustrates how to clone a Container. The name of the C# class that
provides the cloning functionality is relocatorBinding (stepping ahead, this class also
provides the Container migration functionality, which we'll discuss in the following section).
The XML API equivalent of the class is the relocator interface.

Sample Function Parameters:

Name Description

eid The Server ID of the Container to clone.

count The number of clones to create.

Cloning a Virtuozzo Container 46

Sample Function:

/// <summary>

/// Sample function CloneCT.

/// Create an exact copy of the specified Container.

/// </summary>

/// <param name="eid''>The Server ID of the Source Container.</param>
/// <param name="‘count''>Number of copies to create.</param>

/// <returns>The IDs of the new Virtuozzo Containers.</returns>

///

public string[] CloneCT(string eid, int count)

{

cloneResponse response;

try {
// Instantiate the proxy class

relocatorBinding relocator =
(relocatorBinding)binder. InitBinding(typeof(relocatorBinding));

// The main input parameter.
clone clone_input = new clone();

// Set the Server ID of the source Container.
clone_input.eid = eid;

// Number of copies to create.
clone_input.count = 1;

// Clone the Container(s).
response = relocator.clone(clone_input);

catch (Exception e) {
response = new cloneResponse();
response.eid_list[0] = "Exception:
return response.eid_list;

+ e._Message;

}

return response.eid_list;

Migrating a Container to a Different Host 47

Migrating a Container to a Different Host

You can migrate an existing Container from one Hardware Node to another. The resulting
Container is created as an exact copy of the source Container. To migrate a Container, the target
Hardware Node must have Virtuozzo Containers software and Parallels Agent installed on it.

The following V2V (virtual-to-virtual) migration types are supported:

Offline migration. Performed on a stopped or a running source Container. If the Container is
stopped, all its files are simply copied from the source host to the target host. If the
Container is running, the files are first copied to the target machine and then the Container is
stopped momentarily. At this point, the data that was copied to the target machine is
compared to the original data and the files that have changed since the copying began are
updated. The source Container is then started back up. The downtime depends on the size of
the Container but should normally take only a minute or so. Offline migration is the default
migration type.

Simple online migration. Performed on a running source Container. In the beginning of the
migration process, the Container becomes momentarily locked and all of its data, including
the states of all running processes, is dumped into an image file. After that, the Container
operation is resumed, and the dump file is transferred to the target computer where a new
Container is automatically created from it.

Lazy online migration. Instead of migrating all of the data in one big step (as in simple
online migration above), lazy migration copies the data over a time period. Initially, only the
data that is absolutely necessary to bring the new Container up is copied to the target host.
The rest of the data remains locked on the source host and is copied to the destination host
on as-needed basis. By using this approach, you can decrease the services downtime to near
zero.

Iterative online. During the iterative online migration, the Container memory is transferred
to the destination node before the Container data is dumped into an image file. Using this
type of online migration allows to attain the smallest service delay.

Iterative + lazy online migration. This type of online migration combines the techniques
used in both the lazy and iterative migration types, i.e. some part of the Container memory
is transferred to the destination host before dumping a Container, and the rest of the data is
transferred on-demand after the Container has been successfully created on the target host.

On successful migration, the original Container will no longer exist on the source node. This is
done in order to avoid possible conflicts that may occur if both Containers -- the original and the
copy -- are running at the same time. Although the original Container will no longer show up in
the Container list on the source node, the Container data will not be deleted. By default, the data
is kept in its original location (the Container private area) but the private area directory itself
will be renamed. If you wish, you can completely remove the original Container data from the
source node by including the options/remove parameter in the request.

The name of the C# class that provides the migration functionality is relocatorBinding.
The XML API equivalent is the relocator interface.

The following sample shows how to perform a V2V migration.

Migrating a Container to a Different Host

48

Sample Function Parameters:

Name Description
eid The source The Container Server ID.
mn_type Migration type:

0 -- Offline

1 -- Simple online
2 -- Lazy online

3 -- Iterative online

4 -- lterative lazy online

ip_address

This and the rest of the parameters are the connection and login
information that will be used to log in to the target Hardware Node.

The target Hardware Node IP address.

port Port number.
protocol Communication protocol to use:
SSL -- SSL over TCP/IP.
TCP -- plain TCP/IP.
NamedPipe -- named pipe.
username User name. The user must have sufficient rights to connect to the
target Hardware Node.
realm Realm ID. The ID of the authentication database against which to
authenticate the specified user. In this example, we will be using
System Realm -- the user registry of the host operating system.
password User password.

Migrating a Container to a Different Host

49

Sample Function:

/77
//7/
//7/
//7/
/77
//7/
//7/
//7/
//7/
/77
/77
//7/
//7/
//7/
/77
/77
//7/
///
//7/

<summary>

Sample function Migrate.

Migrates a Container to a different Hardware Node.
</summary>

<param name="eid'>Source Container Server ID.</param>
<param name="'mn_type''>Migration type.</param>

<param name=""ip_address''>Target HN IP address.</param>

<param name="‘port*>Target HN port number.</param>
<param name="‘protocol''>Communication protocol.</param>
<param name=''username''>

User name with which to login to the

target HN.

</param>

<param name="‘realm'">

Realm ID on the target HN against which to authenticate the user.
</param>

<param name="‘password'>User password.</param>

<returns>"0OK"™ or error information.</returns>

public string Migrate(string eid, int migration_type, string
ip_address, uint port, string protocol, string username, string realm,
string password)

try {
relocatorBinding relocator =

(relocatorBinding)binder. InitBinding(typeof(relocatorBinding));

migrate_v2v v2v_input = new migrate v2v();

// Set the source Container Server ID.
v2v_input.eid list = new string[1];
v2v_input.eid _list[0] = eid;

/* Set migration type.

* The "options™ member allows you to set other

* migration options. See Parallels Agent XML Reference
* for more info.

*/
Vv2v_input.options = new v2v_migrate_optionsType();
Vv2v_input.options.type = migration_type;

// Set the target Nardware Node connection info.
v2v_input.dst = new connection_infoType();
connection_infoType connection_parm =

(connection_infoType)v2v_input.dst;

// Set the target Node IP address.
Vv2v_input.dst.address = ip_address;

// Set the port number.
v2v_input.dst.portSpecified = true;
Vv2v_input.dst.port = port;

// Set protocol.
v2v_input.dst.protocol = protocol;

// Set login parameters.
v2v_input.dst.login = new auth_nameType();

Performance Monitor 50

Vv2v_input.dst.login.name =
System.Text.ASCIIEncoding.ASCI I .GetBytes(username);
v2v_input.dst.login.realm = realm;

// Set user password.
Vv2v_input.dst.password =
System.Text.ASCIIEncoding.-ASCI 1 .GetBytes(password);

// Set infinite timeout for the request.
relocator.Timeout = -1;
relocator._migrate_v2v(v2v_input);

return "OK";

catch (Exception e) {
return "Exception: " + e_Message;
}

Performance Monitor

}

Performance Monitor is an operator that allows to monitor the performance of the Hardware
Node and Virtuozzo Containers. By monitoring the utilization of the system resources, you can
acquire an important information about your Virtuozzo system health. Performance Monitor can
track a range of processes in real time and provide you with the results that can be used to
identify current and potential problems. It can assist you with the tracking of the processes that
need to be optimized, monitoring the results of the configuration changes, identifying the
resource usage bottlenecks, and planning of upgrades.

Agent SOAP API provides the perf_monBinding class that allows to retrieve performance
reports from the Hardware Node. The types of reports include the performance of the Hardware
Node itself and the performances of the individual Virtuozzo Containers. You can select the
type and a particular aspect of the server performance that you would like to see. This
performance type is called a class. The performance aspect is called a counter. The following
section describes classes and counters in detail.

Performance Monitor 51

Classes, Instances, Counters

Performance Class

Performance class is a type of the system resource that can be monitored. This includes CPU,
memory, disk, network, etc. A class is identified by its ID. You obtain the IDs of the available
classes by retrieving them from the Agent vocabulary. Each performance class is represented by
a category in the vocabulary. To distinguish the class categories from other categories, they all
belong to another category named counters. Different server types (generic, Virtuozzo
Containers) have their own sets of performance classes. The following are examples of
performance class entries in a vocabulary.

Generic performance class (compatible with physical servers only):

<category>
<id>counters_net</id>
<category>generic</category>
<category>counters</category>
<short>Network usage</short>
<long>Network usage related parameters</long>
</category>

Virtuozzo performance class (compatible with Virtuozzo Containers only):

<category>
<id>counters_vz_net</id>
<category>virtuozzo</category>
<category>counters</category>
<short>Network usage</short>
<long>Container network-related counters</long>
</category>

The following table describes the properties of a performance class:

Property Description
id The unique class ID
category The name of the parent vocabulary category.

The counters category indicates that this vocabulary entry is a
performance class.

The generic category indicates that this class is compatible
with generic servers (physical machines or virtual servers treated
as real physical servers). Classes compatible with Virtuozzo
Containers belong to the virtuozzo category.

short Short description of the class.

long Long description of the class.

Performance Monitor 52

Class Instance

While class identifies the type of the system resource, the term "instance" refers to a particular
device when multiple devices of the same type exist in the system. For example, a network
interface in general is a class, but each network card installed in the system is an instance of that
class. Each class has at least one instance, but not all classes may have multiple instances.

Performance Counter

Counters are used to measure various aspects of a performance, such as the CPU times, network
rates, disk usage, etc. Each class has its own set of counters. Counter data is comprised of the
current, minimum, maximum, and average values. You retrieve the list of counters available for
a particular class from the vocabulary by specifying the class name as the criteria. Performance
counters are stored as parameters in a vocabulary. Each counter has a category property that
contains the name of the performance class this counter belongs to. The following is an example
of a performance counter entry in a vocabulary:

<parameter>
<id>counter_cpu_system</id>
<category>counters_vz_cpu</category>
<type>int</type>
<value_type>1</value_type>
<counter_type>2</counter_type>
<short>System</short>
<long>System CPU time</long>
<measure>seconds</measure>

</parameter>

The following table describes the properties of a performance counter:

Property Description
id A string containing the unique counter identifier.
category A string containing the name of the parent performance class (in

general, the name of the parent vocabulary category).

type A string specifying the data type of the counter values. The
possible values are:

int -- integer.

float -- floating point.

value_type A numeric representation of the counter data type (used internally
by Agent).

Performance Monitor

53

counter_type

An integer representing the counter type. Depending on the type,
the values of the counter can be interpreted differently:

0 -- Periodic counter. Contains the minimum, maximum, and
average values for the given time period.

1 -- Incremental counter. The value of an incremental counter is
always higher or equals to the previous value. A good example is
a network counter that counts the number of bytes the interface
has sent or received. The minimum, maximum, and average
values are the same and represent the difference between the
current value and the value from the previous report.

2 -- Cumulative counter. The minimum, maximum, and average
values are the same and represent the total accumulated value
since the server was started. On server restart, counter values are
reset to zero.

short Short counter description.
long Long counter description.
measure Units of measure (seconds, percent).

Performance Monitor 54

Getting a Performance Report

The following lists contain some of the commonly used performance classes and the counters
from the counters_vz_cpu class as an exmple. You can get the complete list of classes
and their counters from Agent vocabulary. See Parallels Agent XML Programmer's Reference
guide for more information on how to retrieve the performance classes and counters
information.

Virtuozzo-specific Performance Classes:

counters_vz_cpu

counters_vz_net

counters_vz_loadavg

counters_vz_process

counters_vz_slm

counters_vz_system

counters_vz_memory

counters_vz_hw _net

counters_vz_quota

counters_vz_ubc

Counters from the counters_vz_cpu class:

counter_cpu_system

counter_cpu_user

counter_cpu_idle

counter_cpu_nice

counter_cpu_starvation

counter_cpu_system_states

counter_cpu_user_states

counter_cpu_idle_states

The following is an example of two functions working together that retrieve the latest
performance report using the specified Server ID, performance class, and performance counter.

Performance Monitor 55

The GetPerfData sample function initializes and populates the necessary input parameters,
gets the performance data from Agent, and then calls the getData sample function that
extracts the data and puts it into a string that can be displayed on the screen.

Sample Function Parameters:

Name Description
eid Server 1D of the Container for which to retrieve the performance data.
class_name The name of the performance class.

counter_name The name of the performance counter.

Performance Monitor

56

Sample Function:

/// <summary>

/// Sample function GetPerfData.

/// Gets the Container or the Hardware Node performance data.
/// </summary>

/// <param name="‘eid''></param>

/// <param name="‘class_name'></param>

/// <param name="counter_name''></param>

/// <returns>A string containing the performance data.</returns>
///

public string GetPerfData(string eid, string class name, string
counter_name, string class_instance)

{

string perf _data = ;
try {

// Create binding object.
perf_monBinding perf _mon =
(perf_monBinding)binder. InitBinding(typeof(perf_monBinding));

// The main input object.
get5 get input = new get5();

// Set Server 1ID.
get_input.eid_list = new string[1];
get _input.eid_list[0] = eid;

/* Set the performance class name.

* Multiple classes can be set if desired.
*/

get _input.@class = new classTypel[1l];
get_input.@class[0] = new classTypel();
get_input.@class[0]-name = class _name;

// Set class instance.

get_input.@class[0].instance = new classTypelnstance[1l];

get_input.@class[0].instance[0] = new classTypelnstance();

if (class_instance.lLength = 0) {
get_input.@class[0]-instance[0]-name = class_instance;

// Set counter. Multiple counters can be set if desired.
get_input.@class[0]-instance[0]-counter = new string[1];
get_input.@class[0]-instance[0]-counter[0] = counter_name;

/* Get the performance data. The returned data is
* extracted using the GetData helper function, which
* 1s defined below.
*/
GetData(perf _mon.get(get input), out perf _data);
}
catch (Exception e) {
perf_data += "Exception:
}

return perf_data;

+ e._Message;

}

/// <summary>
/// Sample function GetData.

Performance Monitor

57

/// This is a helper function that extracts the performance

/// data retrieved by the getPerfData function defined above.
/// </summary>

/// <param name='"‘counters_dat''>

/// Contains the data for each class, instance, and counter that
/// were specified in the request that returned this object (the
/// perf_mon.get() call above). To extract the data, we have to
iterate through all

/// of them.

/// </param>

/// <param name="counters_info'>

/// Output. A string containing the extracted data.

/// </param>

///

public void GetData(perf dataType[] counters_dat, out string
counters_info)

{

counters_info = "";

if (counters dat.Length != 0) {

foreach (perf_dataType counter_dat in counters _dat) {
if (counter_dat.@class != null) {
foreach (perf _dataTypeClass dat in counter_dat.@class)
{
counters_info += "\n Class name: " + dat.name +

"\n" +

"Instances:\n"";
if (dat.instance !'= null) {

foreach (perf_dataTypeClasslnstance instance

in dat.instance) {
counters_info += " DataClasslnstance:
instance.name + '"\n'';
ifT (instance.counter !'= null) {
foreach
(perf_dataTypeClasslInstanceCounter counter in instance.counter) {

counters_info += " \nName:"" +
counter.name + "\n" +
" avg: " +
counter.value.avg + '"\n" +
' cur: " +
counter.value.cur + "\n" +
' max: " +
counter.value.max + "\n" +
" min: " +
counter.value.min;
3
¥
else {
counters_info += " No counters." +
"\n"';
3
¥
else {
counters_info += "No instances.' + '"\n";
}
¥
}
else {

counters_info += "No classes." + '"\n"';

}

Monitoring Alerts 58

counters_info += "Intervals:\n" +
"Start time: " + counter_dat.interval.start time + "\n" +
"End time: " + counter_dat.interval.end _time + '\n" +

"EID: "
}

else {
counters_info += "No data returned.";

}

Monitoring Alerts

}

+ counter_dat.eid + '\n"';

Alerts are notifications that report the system resource allocation problems such as approaching
or exceeding certain limits. Alerts are usually used for monitoring of the Container health,
predicting its performance, or collecting information that can be used to optimize the Container
performance. Use the alertmBinding class to check if a Container has alerts of any kind
currently raised and to retrieve the alert data if it does.

The alert levels are described in the table below.

Alert level

ID

Description

Green

0

Normal operation. This alert is raised when one of the higher-
level alerts is canceled.

Yellow

Moderately dangerous situation. The specified parameter is
coming close (within 10%) to its soft limit barrier.

Red

Critical situation. The parameter exceeded its soft limit or came
very close to the hard limit. Depending on the parameter type,
either some process can be killed at any time now, or the next
resource allocation request can be refused.

Black

The worst-case scenario. The hard limit was reached, the
requested resource allocation was refused or some process
overusing the resource was killed. Once raised, the black alert
remains in effect for 5 minutes.

Monitoring Alerts 59

A Virtuozzo Container may have multiple alerts raised at any given time. The following
function demonstrates how you can check if a Container has any alerts currently raised, and to
retrieve the alert information if it does. The function accepts the list of Containers for which to
check and retrieve the alert information.

/// <summary>

/// Sample function GetAlerts.

/// Retrieves the system alert information for the specified
Container.

/// </summary>

/// <param name="ve_eid'">

/// Server 1D of the Container to get the alerts for.

/// </param>

/// <returns>A string containing the alert information.</returns>
///

public string GetAlerts(string[] ve eid)

{

string list result = "";
try {
// Instantiate the proxy class
alertmBinding alertm =
(alertmBinding)binder.InitBinding(typeof(alertmBinding));

// The main input object.
get _alerts get alerts_input = new get alerts();

// Set Container list.
get _alerts _input.eid_list = ve_eid;

// Get the alert information.
foreach (eventType al_event in
alertm_get_alerts(get_alerts_input)) {
list result += "Data: \n";

// Get the alert data.
resource_alertType res_data =
(resource_alertType)al event.data.event data;
// Read the alert data.
list result += " Class: " + res_data.@class + '"\n" +
// Get counter.
Counter: "™ + res_data.counter + '\n" +
// Get eid.
" Eild: " + res_data.eid + "\n" +
// Get instance.
Instance: " + res_data.instance + '"\n" +
// Get type.
Type: ™ + res_data.type.ToString() + "\n" +
// Get current value.
Cur: " + res_data.cur + '"\n" +
// Get hard limit.
" Hard: " + res_data.hard + "\n" +
// Get soft limit.
" Soft: " + res data.soft + "\n" +
// Get event name.
“"Name: "™ + al_event.info.name + "\n" +
// Get count.
"Count: "™ + al_event.count.ToString() + "\n" +
// Get event category.
"Category: " + al_event.category + "\n" +
// Get event message.

File Management 60

"Message: " +
System.Text.ASCIIEncoding.-ASCI1.GetString(al_event.info.message) +
"\n" +

// Get parameters
"Parameters: "';
/* Call the helper function to extract the
* event message parameter values.
*/
GetParams(al_event.info.parameter, ref list result);
}
}
catch (Exception e) {
list result += "Exception: " + e.Message;
}

return list result;

}

/// <summary>

/// Sample function GetParams.

/// This is a helper function that extracts the

/// alert message parameter values.

/// </summary>

/// <param name="parameter''>The name of the parameter.</param>
/// <param name="list"''>

/// Output. Values.

/// </param>

///
void GetParams(infoType[] parameter, ref string list)
{

string ss = " "';

foreach (infoType param in parameter) {
list += ss + "Message: " +
System.Text.ASCIlIEncoding.ASCI I ._GetString(param.message) +
" Info name: + param.name + "\n'';

if (param.parameter = null) {
GetParams(param.parameter, ref list);
}

File Management

Agent SOAP API provides the FilerBinding class that can be used in client applications to
manage files and directories on Hardware Nodes and Virtuozzo Containers, including listing
files and directories, uploading, downloading, copying, moving and removing, searching, etc. In
this section, we will demonstrate how to perform some of the most common file management
operations.

File Management 61

Request Routing

Before you delve into the details of the individual file management operations, we have to
discuss an important Agent API feature called Request Routing.

Most of the Virtuozzo-specific methods have the Server ID (eid) input parameter which is used
to specify the Container on which the operation should be performed. For example, when you
start or stop a Container, you pass Server ID as an input parameter (see Starting, Stopping,
Restarting a Container (on page 33)). In contrast, methods of the classes that allow to perform
operations on both Virtuozzo Containers and Hardware Nodes don't usually have this parameter.
For example, the FilerBinding. Iist method (lists files and directories) does not have the
eid parameter. So how do you get file listing for a particular Container? That's where request
routing comes in.

Routing

You can tell Agent to route the request to the specified Container and execute it there instead of
executing it on the Hardware Node level. You accomplish this by including the dst/host
(destination host) parameter in the Agent request message header to contain the Server ID of
the target Virtuozzo Container. By not including the dst/host parameter in the message
header, you are instructing Agent to perform the operation on the Hardware Node.

We already have a sample class called Binder (see page 15) that implements this
functionality. The InitBinding method of the Binder class instantiates a proxy class and
populates the request message header. The overloaded InitBinding method accepts the
Container Server ID as a second parameter and adds the dst/host parameter to the header.
To route a request to a particular Virtuozzo Container, use this method to instantiate a proxy
class passing the target Server ID to it.

The following sample code shows how to create a proxy class object without the request routing
information specified.

vzaenvmBinding env =
(vzaenvmBinding)binder. InitBinding(typeof(vzaenvmBinding));

The following sample uses the request routing feature. The requests initiated by the class
methods will be routed to the specified Virtuozzo Container.

string ve_eid = "3b8F950a-981d-b94d-bdel-647dFf39674F1";
filerBinding filer =
(filerBinding)binder.InitBinding(typeof(filerBinding), ve eid);

So the question is, when exactly do you use the request routing feature? The rule of thumb is as
follows:

= |f a method that you want to use to perform an operation on a Virtuozzo Container doesn't
accept Server ID (eid) as a parameter, you have to use request routing.

= If the method has the eid parameter, don't use request routing. If you try to route a request
to a Container by mistake, it most likely will fail with a message saying that the
functionality is not supported.

There are only a few classes that rely on the request routing functionality when the target of an
operation is a Virtuozzo Container. Here's the list:

File Management

62

Class name

Description

computermBinding

Computer management. Provides methods for managing
Hardware Nodes and Containers as if they were regular
physical machines.

filerBinding

Provides methods for managing files and directories.

firewalImBinding

Firewall management (Linux only).

processmBinding System processes management. Provides methods for
executing a program inside a Container and for killing system
processes.

servicemBinding Services management. Provides methods for managing OS
system services.

usermBinding Provides methods for managing users and groups on

Hardware Nodes and Virtuozzo Containers.

File Management 63

Listing Files

The following sample shows how to get a list of files and directories from the Hardware Node.
The path parameter is used to specify the directory (or multiple directories) for which to get
the list of files and subdirectories.

/// <summary>

/// Sample function ListHNFfiles.

/// Lists files and directories on a Hardware Node.

/// </summary>

/// <param name="‘path''>Pathname(s) .</param>

/// <returns>A string containing the list of files.</returns>

///
public string ListHNFiles(string[] path)
{
try {
string list result = "";

// Instantiate the proxy class.
filerBinding filer =
(filerBinding)binder. InitBinding(typeof(FilerBinding));

// The main input object.
list2 list = new list2();

// Set pathnames.
byte[]1[] paths = new byte[path.Length][];
for (int i = 0; i1 < path.Length; i++) {
paths[i] =
System.Text.ASCII1Encoding.ASCII.GetBytes(path[i]);

list.path = paths;

/* Get file listing, then iterate through it and
* populate a string variable with the results.
*/
foreach (FileType file in filer_list(list)) {
list result += ""\n\nName: " +
System.Text.ASCIIEncoding-ASCII._GetString(file_.name) +
'"\nSize: " + Ffile.size.ToString() + "\nType: " +
File.type.ToString(Q);
}

return list result;

}
catch (Exception e) {

return "Exception: " + e._Message;
}

}

The following sample functions shows how to get a list of files and directories from a Virtuozzo
Container. Note that the only difference between this function and the sample function above is
how we create the proxy class object. Here, we use the overloaded binder. InitBinding
method that has the additional eid parameter, which we use to specify the target Virtuozzo
Container. As a result, the request will be routed to the specified Container and the file listing
will be obtained from the Container instead of the Hardware Node.

/// <summary>

File Management

64

/// Sample function ListCTfiles.

/// Lists files and directories on a Container.

/// </summary>

/// <param name="‘path''>Pathname(s) .</param>

/// <param name="‘eid'>

/// Server 1D of the Container.

/// </param>

/// <returns>A string containing the list of files.</returns>
///

public string ListCTfiles(string[] path, string eid)
{

try {
string list result = "";

// Instantiate the proxy class.
filerBinding filer =
(filerBinding)binder. InitBinding(typeof(filerBinding), eid);

// The main input object.
list2 list = new list2();

// Set pathnames.
byte[1[1 paths = new byte[path.Length][];
for (int i = 0; 1 < path.Length; i++) {
paths[i] =
System.Text.ASCII1Encoding-ASCI1._GetBytes(path[i]);

}
list.path = paths;

/* Get file listing, then iterate through it and
* populate a string variable with the results.
*/
foreach (FileType file in filer_list(list)) {
list result += "\n\nName: " +
System.Text.ASCIIEncoding.ASCII.GetString(file.name) +
"\nSize: " + File.size.ToString() + ""\nType: " +
file.type.ToString();
}

return list result;

}
catch (Exception e) {

return "Exception:
}

+ e._Message;

File Management 65

Uploading a File

The FilerBinding class provides the upload method for uploading files to the Hardware
Node or a Virtuozzo Container. The maximum block size that you can upload in a single
method invocation is 512 kilobytes. If uploading a file larger than 512K, you'll have to read the
file data in 512K or smaller blocks and transfer each one individually, i.e. one method
invocation per data block. The first method invocation creates a file on the destination server
and adds the first data block to it. The rest of the source data can be appended to or inserted at
the desired position in the destination file. The following sample shows how to upload a file
larger than 512K in size

/// <summary>
/// Sample function UploadFile.
/// Shows how to upload a Ffile to a Virtuozzo Container.
/// </summary>
/// <param name="'source'>Source file name and path.</param>
/// <param name="‘destination'>
/// Destination file name and path.
/// </param>
/// <param name="‘eid'>Server ID of the target Container.</param>
/// <returns>"0K"™ or error info.</returns>
/// <example>
/// <para>
/// Example: UploadFile(@"c:\share\packets.txt",@"/tmp/packl5')
/// </para>
/// </example>
///
public string UploadFile(string source, string destination, string
eid)
{

try {

filerBinding filer =

(filerBinding)binder. InitBinding(typeof(filerBinding), eid);

/* An offset in the destination file at which
* to insert the data. The value of -1 means
* to append the data to the file.

*/
int offset =

e

// Set the read buffer size (in bytes).
// The maximum possible block size is 512K.
long readBlockSize = 524288;

// The main input object.
upload upload_input = new upload();

/* You can upload more than one file in a single call.
* Here we upload just one file.
*/

upload_input.file = new uploadFile[1];

// Initialize the wrapper for the source file path.
FilelInfo info = new Filelnfo(source);

// Open the file for reading.

File Management

66

FileStream fstream = new FileStream(source, FileMode.Open,
FileAccess.Read);

// Read the file data in 512K blocks.
long remaining_bytes;
while ((fstream.Position < fstream.Length)) {

remaining_bytes = fstream.Length - fstream.Position;

// Initialize the buffer for the current data block.
byte[] readBlock;
if (remaining _bytes > readBlockSize) {

readBlock = new byte[readBlockSize];

else {
readBlock = new byte[remaining_bytes];
}

// Read the data block into the buffer.
fstream.Read(readBlock, 0, readBlock.Length);

/* When adding data to an existing file,

* the "force" option must be set. Otherwise, the
* upload will fail.

*/

upload_input.force = new object();

// Set the offset at which to start writing.
upload_input.file[0] = new uploadFile();
upload_input.file[0].offsetSpecified = true;
upload_input.file[0].offset = offset;

// Set the destination file name and path.
upload_input.file[0].path =
System.Text.ASCIlIEncoding.ASCI 1 ._GetBytes(destination);

// The block of data to write in this iteration.
upload_input.file[0]-body readBlock;
upload_input.file[0].size readBlock.Length;

// Upload the data block.
Filer.upload(upload_input);
}

fstream.Close();
return "OKI";

}
catch (Exception e) {

return "Exception: " + e._Message;
}

File Management 67

Downloading a File

Downloading a file from the Hardware Node or a Virtuozzo Container is similar to uploading a
file described in the previous section. To download a file, you must specify the file name and
path on the source server. For files larger than 512K, the file data must be transferred in 512K
(or less) data blocks. The received data can be written to a file on the client machine or
processed any other way that your client application may require.

68

Index

A
Agent SOAP API « 8
C

Certificates Policy Preparation « 14
Choosing Development Project 10
Classes, Instances, Counters ¢ 51
Cloning a Virtuozzo Container ¢ 45
Complete Program Code 22
Configuring a Container « 38
Connection URL « 18

Creating a Simple Client Program « 13
Creating a Virtuozzo Container « 28

D

Destroying a Container « 35
Development Platforms « 8
Documentation Conventions ¢ 5
Downloading a File * 67

E
Errors and Resolution « 12
F

Feedback « 6
File Management « 60

G

General Conventions « 6

Generating Proxy Classes From WSDL « 11

Getting a Performance Report « 54

Getting Container Configuration Information ¢
37

Getting Server ID From Name » 32

Installation « 9
Instantiating Proxy Classes ¢ 15
Introduction « 7

L

Listing Files « 63
Logging in and Creating a Session « 18

M

Main Program File « 14

Migrating a Container to a Different Host « 47
Modifying Container Name ¢ 42

Modifying DNS Server Assignment « 44
Modifying Hostname « 41

Modifying IP Address « 38

Modifying QoS Settings « 43

Monitoring Alerts ¢ 58

P

Performance Monitor « 50
Preface « 5

R

Request Routing « 61
Retrieving a List of Virtuozzo Containers ¢ 20

S

Shell Prompts in Command Examples ¢ 6
Starting, Stopping, Restarting a Container ¢ 33
Suspending and Resuming a Container ¢ 36

T
Typographical Conventions ¢ 5

U

Uploading a File « 65

\%

Virtuozzo Container Management 27
W

What is Parallels Agent? « 7

	Preface
	Documentation Conventions
	Typographical Conventions
	Shell Prompts in Command Examples
	General Conventions

	Feedback

	Introduction
	What is Parallels Agent?
	Agent SOAP API
	Development Platforms
	Installation

	Choosing Development Project
	Generating Proxy Classes From WSDL
	Errors and Resolution

	Creating a Simple Client Program
	Main Program File
	Certificates Policy Preparation
	Instantiating Proxy Classes
	Connection URL
	Logging in and Creating a Session
	Retrieving a List of Virtuozzo Containers
	Complete Program Code

	Virtuozzo Container Management
	Creating a Virtuozzo Container
	Getting Server ID From Name
	Starting, Stopping, Restarting a Container
	Destroying a Container
	Suspending and Resuming a Container
	Getting Container Configuration Information
	Configuring a Container
	Modifying IP Address
	Modifying Hostname
	Modifying Container Name
	Modifying QoS Settings
	Modifying DNS Server Assignment

	Cloning a Virtuozzo Container
	Migrating a Container to a Different Host
	Performance Monitor
	Classes, Instances, Counters
	Getting a Performance Report

	Monitoring Alerts
	File Management
	Request Routing
	Listing Files
	Uploading a File
	Downloading a File

	Index

